81
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of activated carbon monolith from African locust bean pods and polystyrene resin

, , , &
Pages 175-183 | Received 05 May 2023, Accepted 08 Aug 2023, Published online: 16 Aug 2023

References

  • Comroe ML, Kolasinski KW, Saha D. Direct ink 3D printing of porous carbon monoliths for gas separations. Molecules. 2022;27(17):5653. doi: 10.3390/molecules27175653
  • Candamano S, Policicchio A, Conte G, et al. Preparation of foamed and unfoamed geopolymer/NaX zeolite/activated carbon composites for CO2 adsorption. J Clean Prod. 2022;330:129843. doi: 10.1016/j.jclepro.2021.129843
  • Yetri Y, Hoang AT, Mursida D, et al. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources Part A. 2020;1–15. doi:10.1080/15567036.2020.1811433
  • Gao Y, Zhang Y, Ma Y. Bio-inspired hierarchical porous activated carbon aerogel from waste corrugated cardboard for adsorption of oxytetracycline from water. Biomass Convers Biorefin. 2022;1–18. doi: 10.1007/s13399-022-02936-w
  • Saeidi N, Lotfollahi MN. Effects of powder activated carbon particle size on activated carbon monolith’s properties. Mater Manuf Processes. 2016;31(12):1634–1638. doi: 10.1080/10426914.2015.1117630
  • Beckwée EJ, Wittevrongel GR, Claessens B. Comparing column dynamics in the liquid and vapor phase adsorption of biobutanol on an activated carbon monolith. Adsorption. 2022;28(5–6):209–218. doi: 10.1007/s10450-022-00362-y
  • Saeidi N, Lotfollahi MN. A procedure to form powder activated carbon into activated carbon monolith. Int J Adv Manuf Technol. 2015;81(5):1281–1288. doi: 10.1007/s00170-015-7311-z
  • Ibeh P, García-Mateos F, Rosas J, et al. Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. J Taiwan Inst Chem Eng. 2019;97:480–488.doi:10.1016/j.jtice.2019.02.019
  • Ruiz V, Blanco C, Santamaría R, et al. An activated carbon monolith as an electrode material for supercapacitors. Carbon. 2009;47(1):195–200. doi: 10.1016/j.carbon.2008.09.048
  • Giraldo L, Moreno-Piraján JC. Novel activated carbon monoliths for methane adsorption obtained from coffee husks. Mater Sci Appl. 2011;2(5):331. doi: 10.4236/msa.2011.25043
  • Abuelnoor N, AlHajaj A, Khaleel M, et al. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere. 2021;282:131111. doi: 10.1016/j.chemosphere.2021.131111
  • Ao W, Fu J, Mao X, et al. Microwave assisted preparation of activated carbon from biomass: A review. Renew Sust Energ Rev. 2018;92:958–979.doi:10.1016/j.rser.2018.04.051
  • Geng Z, Xiao Q, Lv H, et al. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Sci Rep. 2016;6(1):1–8. doi: 10.1038/srep30049
  • Taer E, Taslim R, editors Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications. AIP Conference Proceedings; Mersin 10, Turkey. AIP Publishing LLC; 2018.
  • Taer E, Melisa M, Agustino A, et al. Biomass-based activated carbon monolith from Tectona grandis leaf as supercapacitor electrode materials. Energy Sources Part A. 2021;1–12. doi: 10.1080/15567036.2021.1950871
  • Nor N, Deraman M, Suleman M, et al. Supercapacitors using binderless activated carbon monoliths electrodes consisting of a graphite additive and pre-carbonized biomass fibers. Int J Electrochem Sci. 2017;12(3):2520–2539. doi: 10.20964/2017.03.48
  • Syarif N, Tribidasari IA, Wibowo W. Binder-less activated carbon electrode from gelam wood for use in supercapacitors. J Electrochem Sci Eng. 2013;3(2):37–45. doi: 10.5599/jese.2013.0028
  • Arami-Niya A, Rufford TE, Zhu Z. Activated carbon monoliths with hierarchical pore structure from tar pitch and coal powder for the adsorption of CO2, CH4 and N2. Carbon. 2016;103:115–124. doi: 10.1016/j.carbon.2016.02.098
  • Adlak K, Chandra R, Vijay VK, et al. Physicochemical activation and palletisation of Azadirachta indica wood carbons for increased biomethane adsorbed energy storage. J Anal Appl Pyrolysis. 2021;155:105102.doi:10.1016/j.jaap.2021.105102
  • Jordá-Beneyto M, Lozano-Castelló D, Suárez-García F, et al. Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater. 2008;112(1–3):235–242. doi: 10.1016/j.micromeso.2007.09.034
  • Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Activated carbon monoliths for methane storage: influence of binder. Carbon. 2002;40(15):2817–2825. doi: 10.1016/S0008-6223(02)00194-X
  • Taer E, Yanti N, Mustika WS, et al. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. Int J Energy Res. 2020;44(13):10192–10205. doi: 10.1002/er.5639
  • Liu L, Wang F-Y, Shao G-S, et al. A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon. 2010;48(7):2089–2099. doi: 10.1016/j.carbon.2010.02.022
  • Abdulkareem SA, Amosa MK, Adeniyi AG, et al. Development of natural fibre reinforced polystyrene (NFRP) composites: Impact resistance study. IOP Conf Ser Mater Sci Eng. 2019;640:012059. doi: 10.1088/1757-899x/640/1/012059.
  • Adeniyi A, Abdulkareem S, Ndagi M, et al. Effect of fiber content on the physical and mechanical properties of plantain fiber reinforced polystyrene composite. Adv Mater Process Technol. 2022;8(4):4244–4256. doi: 10.1080/2374068X.2022.2054583
  • Adeniyi AG, Abdulkareem SA, Odimayomi KP, et al. Production of thermally cured polystyrene composite reinforced with aluminium powder and clay. Environ Challenges. 2022;9:100608. doi: 10.1016/j.envc.2022.100608
  • Abdulkareem S, Raji S, Adeniyi A. Development of particleboard from waste styrofoam and sawdust. Nig J Technol Dev. 2017;14(1):18–22. doi: 10.4314/njtd.v14i1.3
  • Ighalo JO, Adeniyi AG Utilization of recycled polystyrene and aluminum wastes in the development of conductive plastic composites: evaluation of electrical properties.
  • Abdulkareem S, Adeniyi A. Preparation and evaluation of electrical properties of plastic composites developed from recycled polystyrene and local clay. Nig J Technol Dev. 2018;15(3):98–101. doi: 10.4314/njtd.v15i3.4
  • Onifade D, Ighalo J, Adeniyi A, et al. Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. Microstructural and mechanical properties of the plantain fiber/local clay filled hybrid polystyrene composites. Mech Adv MaterStruct. 2021;29(28):1–11. doi: 10.1080/15376494.2021.1992692
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Recycling of Delonix regia pods biochar and aluminium filings in the development of thermally conducting hybrid polystyrene composites. J Polym Environ. 2022;30(8):3150–3162. doi: 10.1007/s10924-022-02413-5
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Production and properties of the fibrillated plastic composite from recycled polystyrene and Luffa cylindrica. Polym Bull. 2022;80(9):1–20. doi: 10.1007/s00289-022-04511-9
  • Esenwah CN, Ikenebomeh MJ. Processing effects on the nutritional and anti-nutritional contents of African locust bean (Parkia biglobosa Benth.) seed. Pak J Nutr. 2008;7(2):214–217. doi: 10.3923/pjn.2008.214.217
  • Airaodion A, Chika-Igwenyi N, Agu F, et al. Perturbation of sex hormones by potassium bromate and preventive effect of African locust bean (Parkia biglobosa) seed. AJRB. 2022;22–29.
  • Bello OS, Adegoke KA, Sarumi OO, et al. Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon. 2019;5(8):e02323. doi: 10.1016/j.heliyon.2019.e02323
  • Adeniyi AG, Adeyanju CA, Iwuozor KO, et al. Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technol Envir. 2022;25(3):1–11. doi: 10.1007/s10098-022-02415-w
  • Adeniyi GA, Abdulkareem SA, Adeyanju CA, et al. Recovery of metallic oxide rich biochar from waste chicken feather. Low-Carbon Mater Green Constr. 2022;1(1): Accepted Manuscript. doi: 10.1007/s44242-022-00002-2
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. A study on the hybrid polystyrene composite filled with elephant-grass-biochar and doped-aluminium-content. Funct Compos Struct. 2022;4(3):035006. doi: 10.1088/2631-6331/ac8ddf
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of biochar from elephant grass (Pennisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels. 2019;12(10):501–511. doi: 10.1080/17597269.2019.1613751
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Production and properties of the fibrillated plastic composite from recycled polystyrene and Luffa cylindrica. Polym Bull. 2022;80(9):9569–9588. doi: 10.1007/s00289-022-04511-9
  • Ubago-Pérez R, Carrasco-Marín F, Fairén-Jiménez D, et al. Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous Mesoporous Mater. 2006;92(1–3):64–70. doi: 10.1016/j.micromeso.2006.01.002
  • Taer E, Padang E, Yanti N, et al., editors Etlingera elatior leaf agricultural waste as activated carbon monolith for supercapacitor electrodes. J Phys Conf Ser. 2021;2049(1):1–12.
  • Basri N, Deraman M, Daik R, et al., editors Electrochemical impedance spectroscopy study of supercapacitors using deposited nickel oxide nanoparticles carbon monolith electrodes. Adv Mater Res. 2015;2021(61):1–9.
  • Park HY, Huang M, Yoon T-H, et al. Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications. RSC Adv. 2021;11(61):38515–38522. doi: 10.1039/D1RA07815A
  • Adeniyi AG, John KI, Adeleye AT, et al. Metal oxide rich char from muffle furnace and retort heated reactor treated cow bone. Cleaner Eng Technol. 2022;8:100485.doi:10.1016/j.clet.2022.100485
  • Adeniyi AG, Ighalo JO, Iwuozor KO, et al. A study on the thermochemical co-conversion of poultry litter and elephant grass to biochar. Clean Technol Envir. 2022;24(7):1–10. doi: 10.1007/s10098-022-02311-3
  • Ighalo JO, Onifade DV, Adeniyi AG. Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. Int J Sustainable Eng. 2021;14(5):1059–1067. doi: 10.1080/19397038.2021.1886371
  • Adeniyi A, Ighalo J, Onifade D, et al. Production of hybrid biochar by retort-heating of elephant grass (Pennisetum purpureum) and low density polyethylene (LDPE) for waste management and product development. J Mater Environ Sci. 2020;11(12):1940–1952. doi: 10.1080/17597269.2019.1613751
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust Sci Technol. 2021;193(1):60–74. doi: 10.1080/00102202.2019.1650269
  • Ajayi-Banji AA, Ewemoje T, Ajimo A. Efficacy of locust beans husk char in heavy metal sequestration. EREM. 2015;71(4):5–10. doi: 10.5755/j01.erem.71.4.13081
  • Adeniyi AG, Abdulkareem SA, Emenike EC, et al. Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results In Eng. 2022;14:100423.doi:10.1016/j.rineng.2022.100423
  • Adeniyi AG, Abdulkareem SA, Iwuozor KO, et al. Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mech Adv MaterStruct. 2022;30(13):1–10. doi: 10.1080/15376494.2022.2059822
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Thermal recycling strategy of coca-cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Cleaner Eng Technol. 2022;11:100564. doi: 10.1016/j.clet.2022.100564
  • Adeniyi AG, Adeyanju CA, Emenike EC, et al. Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environ Challenges. 2022;9:100630.doi:10.1016/j.envc.2022.100630
  • Emenike EC, Iwuozor KO, Agbana SA, et al. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Cleaner Environ Syst. 2022;6:100094. doi: 10.1016/j.cesys.2022.100094
  • Iwuozor KO, Emenike EC, Abdulkadir M, et al. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech. 2023;25(1):223–233. doi: https://doi.org/10.1007/s12355-022-01166-8
  • Emenike EC, Ogunniyi S, Ighalo JO, et al. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour Technol Rep. 2022;19:101195.doi:10.1016/j.biteb.2022.101195
  • Vargas-Delgadillo DP, Giraldo L, Moreno-Piraján JC. Preparation and characterization of activated carbon monoliths with potential application as phenol adsorbents. EJ Chem. 2010;7(2):531–539. doi: 10.1155/2010/672810
  • Vargas D, Giraldo L, Erto A, et al. Chemical modification of activated carbon monoliths for CO2 adsorption. J Therm Anal Calorim. 2013;114(3):1039–1047. doi: 10.1007/s10973-013-3086-3
  • Ramasamy E, Lee J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem Comm. 2010;46(12):2136–2138. doi: 10.1039/b920916f
  • Iwuozor KO, Ighalo JO, Emenike EC, et al. Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? J Chem Lett. 2021;4:11. doi: 10.22034/JCHEMLETT.2022.327407.1048
  • Ighalo JO, Iwuozor KO, Igwegbe CA, et al. Verification of pore size effect on aqueous-phase adsorption kinetics: a case study of methylene blue. Colloids Surf A Physicochem Eng Asp. 2021;626:127119. doi: 10.1016/j.colsurfa.2021.127119
  • Lim J-W, Choi Y, Yoon H-S, et al. Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials. J Ind Eng Chem. 2010;16(1):51–56. doi: 10.1016/j.jiec.2010.01.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.