44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Temporal-dependent photoconductivity of Cd@ZnS microspheres

, , &
Pages 184-190 | Received 19 Jun 2023, Accepted 15 Aug 2023, Published online: 28 Aug 2023

References

  • Bathula B, Gurugubelli TR, Yoo J, et al. Recent progress in the use of SnO2 quantum dots: From synthesis to photocatalytic applications. Catalysts. 2023;13(4):765 1–76522. doi: 10.3390/catal13040765
  • Liu S, Li L, Cao Y, et al. Effect of Ga ion doping in the ZnS passivation layer for high-efficiency quantum dot-sensitized solar cells. J Alloy Compd. 2022;899:162910–162918. doi: 10.1016/j.jallcom.2021.162910
  • Thirumala Rao G, Babu B, Joyce Stella R, et al. Synthesis and characterization of VO2+ doped ZnO–CdS composite nanopowder. J Mol Struct. 2015;1081:254–259. doi: 10.1016/j.molstruc.2014.10.044
  • Nadikatla SK, Chintada VB, Gurugubelli TR, et al. Review of recent developments in the fabrication of ZnO/CdSHeterostructure photocatalysts for degradation of organic pollutants and hydrogen production. Molecules. 2023;28(11):1–28. doi: 10.3390/molecules28114277
  • Maddi L, Vinukonda K, Gurugubelli TR, et al. One-step, in situ hydrothermal fabrication of Cobalt-doped ZnO/CdS Nanosheets for optoelectronic applications. Electronics. 2023;12(5):1245: 1–10. doi: 10.3390/electronics12051245
  • Qin G, Zuo L, Wei Y, et al. Quantum dots with room temperature phosphorescence and its logic gate function colloids and surfaces. Biointerfaces. 2021;206:111968. doi: 10.1016/j.colsurfb.2021.111968
  • Tan PM, Ngoc T, Nguyen VD, et al. Study of optical properties and energy transfer mechanism of Tb3+, Sm3+ singly doped and co-doped ZnS quantum dots optical materials. Opt Mater. 2021;114:110901–110909. doi: 10.1016/j.optmat.2021.110901
  • Madkour M, Ali AA, Sagheer FA, et al. Solar active Cu2+ -ZnS Photocatalyst for efficient photodegradation of 4-chlorophenol: effective cation doping effect. Catal Today. 2021;379:7–14. doi: 10.1016/j.cattod.2020.08.004
  • Heiba ZK, Imam NG et al. Coexistence of cubic and hexagonal phases of Cd doped ZnS at different annealing temperatures. Mater Sci Semicond Process. 2015;34:39–44. doi: 10.1016/j.mssp.2015.01.045
  • Thirumala Rao G, Ravikumar RVSSN, Koutavarapu R. Structural, optical, and photoluminescence properties of Cr3+Ion-doped ZnO-CdS Nanocomposite: Synthesis and investigations for yellow emission. J Electron Mater. 2022;51(4):1876–1883. doi: 10.1007/s11664-022-09446-5
  • Mosavi SM, Kafashan H. Physical properties of Cd-doped ZnS thin films. Super Lattices Microstruct. 2019;126:139–149. doi: 10.1016/j.spmi.2018.12.002
  • Kang E, Kim JH. Highly boosted photocatalytic Hy production from ZnS particles assisted by Cd-Cu Co-doping. J Environ Chem Eng. 2023;11(3):109833–109838. doi: 10.1016/j.jece.2023.109833
  • Verma U, Thakur V, Rajaram P, et al. Structural, morphological and optical properties of sprayed nanocrystalline thin films of Cd1-xZnxS solid solution. Electron Mater Lett. 2015;11(1):46–54. doi: 10.1007/s13391-014-4064-z
  • Ashok Kumar M, Muthukumaran S. Size dependent Structural and optical properties of Cd0.9 Zn0.1S thin films. Phys Procedia. 2013;49:137–144. doi: 10.1016/j.phpro.2013.10.020
  • Peter AJ, Lee CW. Electronic and optical properties of CdS/CdZnS nanocrystals. Chinese Phys. 2012;21(8):087302. doi: 10.1088/1674-1056/21/8/087302
  • Hassan JJ, Mahdi MA, Chin CW, et al. A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sensors and Actuat B Chem. 2013;176:360–367. doi: 10.1016/j.snb.2012.09.081
  • Brahma S, Huang PC, Mwakikunga BW, et al. Cd doped ZnO nanorods for efficient room temperature NH3 sensing. Mater Chem Phys. 2023;294:127053. doi: 10.1016/j.matchemphys.2022.127053
  • Madhavi J, Prasad V, Reddy KR, et al. Facile synthesis of Ni-doped ZnS-CdS composite and their magnetic and photoluminescence properties. J Environ Chem Eng. 2021;9(6):106335. doi: 10.1016/j.jece.2021.106335
  • Shahi AK, Pandey BK, Gopal R et al. PEG mediated solvothermal synthesis of fine ZnS sub-micro and microspheres and their optical properties. Mater Lett. 2014;116(1):112–115. doi: 10.1016/j.matlet.2013.10.099
  • Jie JS, Zhang WJ, Jiang Y, et al. Photoconductive characteristics of single-crystal CdS Nanoribbons. Nano Lett. 2006;6(9):1887–1892. doi: 10.1021/nl060867g
  • Carrey J, Carrère H, Kahn ML, et al. Photoconductivity of self-assembled ZnO nanoparticles synthesized by organometallic chemistry. Semicond Sci Technol. 2008;23(2):025003. doi: 10.1088/0268-1242/23/2/025003
  • Karim AMMT, Rahman MM, Shahjahan M, et al. Study of the morphology, photoluminescence and photoconductivity of ZnO–CdO nanocrystals. Mater Res Express. 2015;2(3):036402. doi: 10.1088/2053-1591/2/3/036402
  • Mishra SK, Bayan S, Shankar R, et al. Efficient UV photosensitive and photoluminescence properties of sol–gel derived Sn doped ZnO nanostructures. Sens Actuators A: Phys. 2014;211:8–14. doi: 10.1016/j.sna.2014.02.020
  • Srivastava RK, Pandey N, Mishra SK, et al. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method. Mat Sci Semiconductor Process. 2013;16(6):1659–1664. doi: 10.1016/j.mssp.2013.06.009
  • Kripal R, Gupta AK, Mishra SK, et al. Photoluminescence and photoconductivity of ZnS: Mn2+ nanoparticles synthesized via co-precipitation method. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2010;76(5):523–530. doi: 10.1016/j.saa.2010.04.018
  • Devi Dharni M, Juliet AV, Ade R, et al. Enhancement in optoelectronic properties of europium-doped ZnS thin films prepared by nebulizer spray technique for UV photodetection applications. Mater Sci Semicond Process. 2022;149:149 106572. doi: 10.1016/j.mssp.2022.106859
  • Farooqi MMH, Srivastava RK. Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles. J Alloys Compd. 2017;691:275–286. doi: 10.1016/j.jallcom.2016.08.245
  • Shahi AK, Pandey BK, Singh SC, et al. Observation of negative persistent photoconductivity in ZnS/PVA nanocomposite materials. J Alloys Compd. 2014;588:440–448. doi: 10.1016/j.jallcom.2013.11.056
  • Rajan A, Gupta V, Arora K, et al. Thickness dependent ultraviolet photoconductivity studies on sol-gel derived zinc oxide (ZnO) films. Mater Today Commun. 2023;35:105507. doi: 10.1016/j.mtcomm.2023.105507
  • Beinik I, Kratzer M, Wachauer A, et al. Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM. Beilstein J Nanotechnol. 2013;4:208–217. doi: 10.3762/bjnano.4.21
  • Zibo L, Li H, Jiang K, et al. Self-Powered Perovskite/CdS heterostructure photodetectors. ACS Appl Mater Interfaces. 2019;11(43):40204–40213. doi: 10.1021/acsami.9b11835

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.