50
Views
2
CrossRef citations to date
0
Altmetric
conference paper

Processing and properties of porous Ti-Nb-Ta-Zr alloy for biomedical applications using the powder metallurgy route

, &
Pages 169-176 | Published online: 22 Sep 2015

References

  • Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. & Wadley, H. N. G. 2000, Metal Foams: A Design Guide, Butterworth-Heinemann.
  • Banumathy, S., Mandal, R. K. & Singh, A. K. 2009, “Structure of orthorhombic martensitic phase in binary Ti-Nb alloys”, Journal of Applied Physics, Vol. 106, pp. 093518–1–093518–6.
  • Collings, E. W. 1984, The Physical Metallurgy of Titanium Alloys, Vol. 3, American Society for Metals, Ohio.
  • Donachie, Jr, M. J. 1989, TITANIUM a Technical Guide, 2nd edition, ASM International, Ohio.
  • Eisenbarth, E., Velten, D., Muller, M., Thull, R. & Breme, J. 2004, “Biocompatible of ß-stabilizing elements of titanium alloys”, Biomaterial, Vol. 25, pp. 5705–5713.
  • Erk, K. A., Dunand, D. C. & Shull, K. R. 2008, “Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2”, Acta Materialia, Vol. 56, pp. 5147–5157.
  • Gibson, L. J. & Ashby, M. F. 1997, Cellular Solids: Structure and Properties, 2nd edition, Cambridge University Press, Cambridge.
  • Hao, Y. L., Yang, R., Niinomi, M., Kuroda, D., Zhou, Y. L., Fukunaga, K. & Suzuki, A. 2002, “Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6 Zr in relation to martensite”, Metallurgical and Materials Transactions A, Vol. 33, pp. 3137–3144.
  • Ikeda, M., Komatsu, S. Y., Sowa, I. & Niinomi, M. 2002, “Aging behaviour of the Ti29-Nb-13Ta-4.6Zr new beta alloy for medical implants”, Metallurgical and Materials Transactions, Vol. 33A, pp. 487–493.
  • Itala, A. I., Ylanen, H. O., Ekholm, C., Karlsson, K. H. & Aro, H. T. 2001, “Pore diametre of more than 100 micrometre is not requisite for bone ingrowth in rabbits”, Journal of Biomedical Materials Research, Vol. 58, pp. 679–683.
  • Jee, C. S. Y., Ozguven, N., Guo, Z. X. & Evans, J. R. G. 2000, “Preparation of high porosity metal foam”, Metalurgical and Materials Transactions, Vol. 31B, pp. 1345–1352.
  • Jorgensen, D. J. & Dunand, D. C. 2010, “Ti-6Al-4V with micro and macro pores produced by powder sintering and electrochemical dissolution of steel wires”, Materials Science and Engineering: A, Vol. 527, pp. 849–853.
  • Kearns, M. W., Blenkinsop, P. A., Barber, A. C. & Farthing, T. W. 1987, “Manufacture of a novel porous materials”, Metals and Materials (Institute of Metals), Vol. 3, pp. 85–88.
  • Long, M. & Rack, H. J. 1998, “Titanium alloy in total joint replacement-a materials science perspectives”, Biomaterials, Vol. 19, pp. 1621–1639.
  • Murray, N. G. D. & Dunand, D. C. 2004, “Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part I kinetics and microstructure”, Acta Materialia, Vol. 52, pp. 22692278.
  • Murray, N. G. D. & Dunan, D. C. 2006, “Effect of initial preform porosity on solid-state foaming of titanium”, Journal of Material Research, Vol. 21, pp. 1175–1188.
  • Niinomi, M. 1998, “Mechanical Properties of biomedical titanium alloys”, Materials Science and Engineering A, Vol. 243, pp. 231–236.
  • Oh, I. H., Nomura, N., Masahashi, N. & Hanada, S. 2003, “Mechanical properties of porous titanium compacts prepared by powder sintering”, Scripta Materialia, Vol. 49, pp. 1197–1202.
  • Oppenheimer, S. 2007, “Processing and characterization of porous Ti-6Al-4V and NiTi”, Dissertation of Doctor of Philosophy, Materials Science and Engineering Department, Northwestern University, Illinois, pp. 70–72.
  • Perl, D. P. & Brody, A. R. 1980, “Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons”, Science, Vol. 208, pp. 297–299.
  • Rae, T. 1981, “The toxicity of metals used in orthopaedic prostheses: An experimental study using cultured human synovial fibroblasts”, Journal of Bone & Joint Surgery, British Volume, Vol. 63, pp. 435–440.
  • Sakaguchi, N., Mitsuo, N., Akahori, T., Saito, T. & Furuta, T. 2004, “Effect of alloying elements on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical applications”, Materials Science Forum, No. 449–452, pp. 1269–1272.
  • Song, Y., Xu, D., Yang, R., Li, D., Wu, W. T. & Guo, Z. X. 1999, “Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio titanium alloys”, Materials Science and Engineering A, Vol. 260, pp. 269–274.
  • Taddei, E. B., Henriques, V. A. R., Silva, C. R. M. & Cairo, C. A. A. 2004, “Production of new titanium alloy for orthopaedic implants”, Materials Science and Engineering C, Vol. 24, pp. 683–687.
  • Tang, X., Ahmed, T. & Rack, H. J. 2000, “Phase transformation in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys”, Journal of Materials Science, Vol. 35, pp. 1805–1811.
  • Thieme, M., Wieters, K. P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T. J. & Grill, W. 1999, “Titanium powder sintering for preparation of porous FGM destined as skeletal replacement implant”, Materials Science Forum, No. 308–311, pp. 374–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.