135
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Mechanical and thermal stresses in radially functionally graded hollow cylinders with variable thickness due to symmetric loads

&
Pages S108-S121 | Received 06 Nov 2016, Accepted 16 May 2018, Published online: 28 Jun 2018

References

  • Afshin, A., M. Z. Nejad, and K. Dastani. 2017. “Transient Thermoelastic Analysis of FGM Rotating Thick Cylindrical Pressure Vessels under Arbitrary Boundary and Initial Conditions.” Journal of Computational Applied Mechanics 48 (1): 15–26.
  • Akbarzadeh, A., and Z. Chen. 2014. “Thermo-Magneto-Electro-Elastic Responses of Rotating Hollow Cylinders.” Mechanics of Advanced Materials and Structures 21 (1): 67–80. doi:10.1080/15376494.2012.677108.
  • Ayoubi, P., and A. Alibeigloo. 2017. “Three-Dimensional Transient Analysis of FGM Cylindrical Shell Subjected to Thermal and Mechanical Loading.” Journal of Thermal Stresses 40 (9): 1166–1183. doi:10.1080/01495739.2017.1325720.
  • Aziz, A., and M. Torabi. 2013. “Thermal Stresses in a Hollow Cylinder with Convective Boundary Conditions on the Inside and Outside Surfaces.” Journal of Thermal Stresses 36 (10): 1096–1111. doi:10.1080/01495739.2013.818894.
  • Belhocine, A., A. R. Abu Bakar, and M. Bouchetara. 2015. “Thermal and Structural Analysis of Disc Brake Assembly during Single Stop Braking Event.” Australian Journal of Mechanical Engineering 1–13.
  • Bîrsan, M., T. Sadowski, and D. Pietras. 2013. “Thermoelastic Deformations of Cylindrical Multi-Layered Shells Using a Direct Approach.” Journal of Thermal Stresses 36 (8): 749–789. doi:10.1080/01495739.2013.764802.
  • Boresi, A. P., K. Chong, and J. D. Lee. 2010. Elasticity in Engineering Mechanics. John Wiley & Sons.
  • Dai, H. L., and T. Dai. 2014. “Analysis for the Thermoelastic Bending of a Functionally Graded Material Cylindrical Shell.” Meccanica 49 (5): 1069–1081. doi:10.1007/s11012-013-9853-1.
  • Dai, H. L., Y. N. Rao, and T. Dai. 2016. “A Review of Recent Researches on FGM Cylindrical Structures under Coupled Physical Interactions, 2000–2015.” Composite Structures 152: 199–225. doi:10.1016/j.compstruct.2016.05.042.
  • Daneshmehr, A., and M. S. Bashusqeh. 2016. “On the Dynamical Thermoelasticity Problem for a Hollow Funtionally Graded Cylinder.” Mechanics of Advanced Materials and Structures 23 (2): 195–200. doi:10.1080/15376494.2014.949926.
  • Dehghan, M., M. Z. Nejad, and A. Moosaie. 2016. “Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Shells of Revolution: Governing Equations and Solutions for Some Simple Cases.” International Journal of Engineering Science 104: 34–61. doi:10.1016/j.ijengsci.2016.04.007.
  • Eipakchi, H. R. 2010. “Third-Order Shear Deformation Theory for Stress Analysis of a Thick Conical Shell under Pressure.” Journal of Mechanics of Materials and Structures 5 (1): 1–17. doi:10.2140/jomms.
  • Fatehi, P., and M. Z. Nejad. 2014. “Effects of Material Gradients on Onset of Yield in FGM Rotating Thick Cylindrical Shells.” International Journal of Applied Mechanics 6 (4): Article Number: 1450038. doi:10.1142/S1758825114500380.
  • Foroutan, M., and N. Shirzadi. 2016. “Analysis of Free Vibration of Functionally Graded Material Cylinders by Hermitian Collocation Meshless Method.” Australian Journal of Mechanical Engineering 14 (2): 95-103 .
  • Ghannad, M., G. H. Rahimi, and M. Z. Nejad. 2012b. “Determination of Displacements and Stresses in Pressurized Thick Cylindrical Shells with Variable Thickness Using Perturbation Technique.” Mechanika 18 (1): 14–21. doi:10.5755/j01.mech.18.1.1274.
  • Ghannad, M., G. H. Rahimi, and M. Z. Nejad. 2013. “Elastic Analysis of Pressurized Thick Cylindrical Shells with Variable Thickness Made of Functionally Graded Materials.” Composites Part B-Engineering 45 (1): 388–396. doi:10.1016/j.compositesb.2012.09.043.
  • Ghannad, M., and M. Z. Nejad. 2010. “Elastic Analysis of Pressurized Thick Hollow Cylindrical Shells with Clamped-Clamped Ends.” Mechanika 85 (5): 11–18.
  • Ghannad, M., and M. Z. Nejad. 2012. “Elastic Analysis of Heterogeneous Thick Cylinders Subjected to Internal or External Pressure Using Shear Deformation Theory.” Acta Polytechnica Hungarica 9 (6): 117–136.
  • Ghannad, M., M. Z. Nejad, and G. H. Rahimi. 2009. “Elastic Solution of Axisymmetric Thick Truncated Conical Shells Based on First-Order Shear Deformation Theory.” Mechanika 79 (5): 13–20.
  • Ghannad, M., M. Z. Nejad, G. H. Rahimi, and H. Sabouri. 2012a. “Elastic Analysis of Pressurized Thick Truncated Conical Shells Made of Functionally Graded Materials.” Structural Engineering and Mechanics 43 (1): 105–126. doi:10.12989/sem.2012.43.1.105.
  • Ghannad, M., and Y. M. Parhizkar. 2017. “2D Thermo Elastic Behavior of a FG Cylinder under Thermomechanical Loads Using a First Order Temperature Theory.” International Journal of Pressure Vessels and Piping 149: 75–92. doi:10.1016/j.ijpvp.2016.12.002.
  • Gharibi, M., M. Z. Nejad, and A. Hadi. 2017. “Elastic Analysis of Functionally Graded Rotating Thick Cylindrical Pressure Vessels with Exponentially-Varying Properties Using Power Series Method of Frobenius.” Journal of Computational Applied Mechanics 48 (1): 89–98.
  • Hadi, A., M. Z. Nejad, A. Rastgoo, and M. Hosseini. 2018. “Buckling Analysis of FGM Euler-Bernoulli Nano-Beams with 3D-Varying Properties Based on Consistent Couple-Stress Theory.” Steel and Composite Structures 26 (6): 663–672.
  • Hadi, A., M. Z. Nejad, and M. Hosseini. 2018. “Vibrations of Three-Dimensionally Graded Nanobeams.” International Journal of Engineering Science 128: 12–23. doi:10.1016/j.ijengsci.2018.03.004.
  • Jabbari, M., A. Bahtui, and M. R. Eslami. 2006. “Axisymmetric Mechanical and Thermal Stresses in Thick Long FGM Cylinders.” Journal of Thermal Stresses 29 (7): 643–663. doi:10.1080/01495730500499118.
  • Jabbari, M., M. Ghannad, and M. Z. Nejad. 2016. “Effect of Thickness Profile and FG Function on Rotating Disks under Thermal and Mechanical Loading.” Journal of Mechanics 32 (1): 35–46. doi:10.1017/jmech.2015.95.
  • Jabbari, M., M. Z. Nejad, and M. Ghannad. 2015. “Thermo-Elastic Analysis of Axially Functionally Graded Rotating Thick Cylindrical Pressure Vessels with Variable Thickness under Mechanical Loading.” International Journal of Engineering Science 96: 1–18. doi:10.1016/j.ijengsci.2015.07.005.
  • Jabbari, M., M. Z. Nejad, and M. Ghannad. 2016. “Thermo-Elastic Analysis of Axially Functionally Graded Rotating Thick Truncated Conical Shells with Varying Thickness.” Composites Part B-Engineering 96: 20–34. doi:10.1016/j.compositesb.2016.04.026.
  • Jabbari, M., S. Sohrabpour, and M. R. Eslami. 2002. “Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads.” International Journal of Pressure Vessels and Piping 79 (7): 493–497. doi:10.1016/S0308-0161(02)00043-1.
  • Kashkoli, M. D., K. N. Tahan, and M. Z. Nejad. 2018b. “Time-dependent Thermomechanical Creep Behavior Of FGM Thick Hollow Cylindrical Shells under Non-uniform Internal Pressure.” International Journal of Applied Mechanics 9 (6): Article Number: 1750086
  • Kashkoli, M. D., K. N. Tahan, and M. Z. Nejad. 2018a. “Thermomechanical Creep Analysis of FGM Thick Cylindrical Pressure Vessels with Variable Thickness.” International Journal of Applied Mechanics 10 (1): Article Number: 1650054. doi:10.1142/S1758825118500084.
  • Kashkoli, M. D., and M. Z. Nejad. 2018. “Time-Dependent Creep Analysis and Life Assessment of 304L Austenitic Stainless Steel Thick Pressurized Truncated Conical Shells.” In Steel and Composite Structures. Accepted Paper.
  • Kordkheili, S. H., and R. Naghdabadi. 2007. “Thermoelastic Analysis of Functionally Graded Cylinders under Axial Loading.” Journal of Thermal Stresses 31 (1): 1–17. doi:10.1080/01495730701737803.
  • Mahapatra, T. R., V. R. Kar, S. K. Panda, and K. Mehar. 2017. “Nonlinear Thermoelastic Deflection of Temperature-Dependent FGM Curved Shallow Shell under Nonlinear Thermal Loading.” Journal of Thermal Stresses 40 (9): 1184–1199. doi:10.1080/01495739.2017.1302788.
  • Masumi, A. A., G. H. Rahimi, and G. H. Liaghat. 2018. “Thermoelastic Stress Analysis in Composite Cylindrical Vessel with Metallic Liner Using First-Order Shear Deformation Theory and Differential Quadrature Method.” Journal of Thermoplastic Composite Materials 0(0): 1–35. doi:10.1177/0892705717744832.
  • Mazarei, Z., M. Z. Nejad, and A. Hadi. 2016. “Thermo-Elasto-Plastic Analysis of Thick-Walled Spherical Pressure Vessels Made of Functionally Graded Materials.” International Journal of Applied Mechanics 8 (4): Article Number: 1650054. doi:10.1142/S175882511650054X.
  • Nejad, M. Z., and A. Hadi. 2016a. “Eringen’s Non-Local Elasticity Theory for Bending Analysis of Bi-Directional Functionally Graded Euler-Bernoulli Nano-Beams.” International Journal of Engineering Science 105: 1–11. doi:10.1016/j.ijengsci.2016.04.011.
  • Nejad, M. Z., and A. Hadi. 2016b. “Non-Local Analysis of Free Vibration of Bi-Directional Functionally Graded Euler-Bernoulli Nano-Beams.” International Journal of Engineering Science 106: 1–9. doi:10.1016/j.ijengsci.2016.05.005.
  • Nejad, M. Z., A. Hadi, and A. Farajpour. 2017. “Consistent Couple-Stress Theory for Free Vibration Analysis of Euler-Bernoulli Nano-Beams Made of Arbitrary Bi-Directional Functionally Graded Materials.” Structural Engineering and Mechanics 63 (2): 161–169.
  • Nejad, M. Z., A. Hadi, and A. Rastgoo. 2016. “Buckling Analysis of Arbitrary Two-Directional Functionally Graded Euler-Bernoulli Nano-Beams Based on Nonlocal Elasticity Theory.” International Journal of Engineering Science 103: 1–10. doi:10.1016/j.ijengsci.2016.03.001.
  • Nejad, M. Z., A. Rastgoo, and A. Hadi. 2015. “Exact Elasto-Plastic Analysis of Rotating Disks Made of Functionally Graded Materials.” International Journal of Engineering Science 85: 47–57. doi:10.1016/j.ijengsci.2014.07.009.
  • Nejad, M. Z., and G. H. Rahimi. 2009. “Deformations and Stresses in Rotating FGM Pressurized Thick Hollow Cylinder under Thermal Load.” Scientific Research and Essays 4 (3): 131–140.
  • Nejad, M. Z., and G. H. Rahimi. 2010. “Elastic Analysis of FGM Rotating Cylindrical Pressure Vessels.” Journal of the Chinese Institute of Engineers 33 (4): 525–530. doi:10.1080/02533839.2010.9671640.
  • Nejad, M. Z., G. H. Rahimi, and M. Ghannad. 2009. “Set of Field Equations for Thick Shell of Revolution Made of Functionally Graded Materials in Curvilinear Coordinate System.” Mechanika 77 (3): 18–26.
  • Nejad, M. Z., M. Jabbari, and A. Hadi. 2017. “A Review of Functionally Graded Thick Cylindrical and Conical Shells.” Journal of Computational Applied Mechanics 48 (2): 357–370.
  • Nejad, M. Z., M. Jabbari, and M. Ghannad. 2014a. “A Semi-Analytical Solution of Thick Truncated Cones Using Matched Asymptotic Method and Disk Form Multilayers.” Archive of Mechanical Engineering 61 (3): 495–513. doi:10.2478/meceng-2014-0029.
  • Nejad, M. Z., M. Jabbari, and M. Ghannad. 2015a. “Elastic Analysis of FGM Rotating Thick Truncated Conical Shells with Axially-Varying Properties under Non-Uniform Pressure Loading.” Composite Structures 122: 561–569. doi:10.1016/j.compstruct.2014.12.028.
  • Nejad, M. Z., M. Jabbari, and M. Ghannad. 2015b. “Elastic Analysis of Axially Functionally Graded Rotating Thick Cylinder with Variable Thickness under Non-Uniform Arbitrarily Pressure Loading.” International Journal of Engineering Science 89: 86–99. doi:10.1016/j.ijengsci.2014.12.004.
  • Nejad, M. Z., M. Jabbari, and M. Ghannad. 2015c. “Elastic Analysis of Rotating Thick Cylindrical Pressure Vessels under Non-Uniform Pressure: Linear and Non-Linear Thickness.” Periodica Polytechnica-Mechanical Engineering 59 (2): 65–73. doi:10.3311/PPme.7153.
  • Nejad, M. Z., M. Jabbari, and M. Ghannad. 2017. “A General Disk Form Formulation for Thermo-Elastic Analysis of Functionally Graded Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness.” Acta Mechanica 228 (1): 215–231. doi:10.1007/s00707-016-1709-z.
  • Nejad, M. Z., and M. D. Kashkoli. 2014. “Time-Dependent Thermo-Creep Analysis of Rotating FGM Thick-Walled Cylindrical Pressure Vessels under Heat Flux.” International Journal of Engineering Science 82: 222–237. doi:10.1016/j.ijengsci.2014.06.006.
  • Nejad, M. Z., and P. Fatehi. 2015. “Exact Elasto-Plastic Analysis of Rotating Thick-Walled Cylindrical Pressure Vessels Made of Functionally Graded Materials.” International Journal of Engineering Science 86: 26–43. doi:10.1016/j.ijengsci.2014.10.002.
  • Nejad, Z. M., M. Jabbari, and M. Ghannad. 2014b. “A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers.” Scientific World Journal. Article Number: 932743. https://www.hindawi.com/journals/tswj/2014/932743/.
  • Nemirovskii, Y. V., and A. I. Babin. 2018. “Coupled Thermoelasticity Problem for Multilayer Composite Shells of Revolution. I. Theoretical Aspects of the Problem.” Journal of Mathematical Sciences 229 (2): 211–225.
  • Obata, Y., and N. Noda. 1994. “Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material.” Journal of Thermal Stresses 17 (3): 471–487. doi:10.1080/01495739408946273.
  • Ootao, Y., and M. Ishihara. 2012. “Transient Thermal Stress Problem of a Functionally Graded Magneto-Electro-Thermoelastic Hollow Cylinder Due to a Uniform Surface Heating.” Journal of Thermal Stresses 35 (6): 517–533. doi:10.1080/01495739.2012.674781.
  • Ootao, Y., Y. Tanigawa, and T. Nakamura. 1999. “Optimization of Material Composition of FGM Hollow Circular Cylinder under Thermal Loading: A Neural Network Approach.” Composites Part B-Engineering 30 (4): 415–422. doi:10.1016/S1359-8368(99)00003-7.
  • Reddy, J. N., and C. D. Chin. 1998. “Thermomechanical Analysis of Functionally Graded Cylinders and Plates.” Journal of Thermal Stresses 21 (6): 593–626. doi:10.1080/01495739808956165.
  • Ruhi, M., A. Angoshtari, and R. Naghdabadi. 2005. “Thermoelastic Analysis of Thick-Walled Finite-Length Cylinders of Functionally Graded Materials.” Journal of Thermal Stresses 28 (4): 391–408. doi:10.1080/01495730590916623.
  • Shao, Z. S. 2005. “Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder with Finite Length.” International Journal of Pressure Vessels and Piping 82 (3): 155–163. doi:10.1016/j.ijpvp.2004.09.007.
  • Sherief, H. H., and F. A. Hamza. 2016. “Modeling of Variable Thermal Conductivity in a Generalized Thermoelastic Infinitely Long Hollow Cylinder.” Meccanica 51 (3): 551–558. doi:10.1007/s11012-015-0219-8.
  • Sofiyev, A. H., Z. Zerin, and N. Kuruoglu. 2017. “Thermoelastic Buckling of FGM Conical Shells under Non-Linear Temperature Rise in the Framework of the Shear Deformation Theory.” Composites Part B: Engineering 108: 279–290. doi:10.1016/j.compositesb.2016.09.102.
  • Tutuncu, N., and M. Ozturk. 2001. “Exact Solutions for Stresses in Functionally Graded Pressure Vessels.” Composites Part B-Engineering 32 (8): 683–686. doi:10.1016/S1359-8368(01)00041-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.