137
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Performance analyses of coal-fired thermal power plant using parabolic solar collectors for feed water heaters

Pages 332-343 | Received 01 Oct 2019, Accepted 06 Dec 2019, Published online: 02 Jan 2020

References

  • Ahmadi, G. R., and D. Toghraie. 2015. “Parallel Feed Water Heating Repowering of a 200 MW Steam Power Plant.” Journal of Power Technologies 95 (4): 288–301.
  • Ahmadi, G. R., and D. Toghraie. 2016. “Energy and Exergy Analysis of Montazeri Steam Power Plant in Iran.” Renewable and Sustainable Energy Reviews 56: 454–463. doi:https://doi.org/10.1016/j.rser.2015.11.074.
  • Ahmadi, G. R., D. Toghraie, and O. A. Akbari. 2017b. “Efficiency Improvement of a Steam Power Plant through Solar Repowering.” International Journal of Exergy 22 (2): 158–182. doi:https://doi.org/10.1504/IJEX.2017.083015.
  • Ahmadi, G. R., D. Toghraie, A. Azimian, and O. A. Akbari. 2017a. “Evaluation of Synchronous Execution of Full Repowering and Solar Assisting in a 200 MW Steam Power Plant, a Case Study.” Applied Thermal Engineering 112: 111–123. doi:https://doi.org/10.1016/j.applthermaleng.2016.10.083.
  • Bekdemir, S., R. Ozturk, and Z. Yumurtac. 2003. “Condenser Optimization in Steam Power Plant.” Journal of Thermal Science 12 (2): 176–178. doi:https://doi.org/10.1007/s11630-003-0062-4.
  • Chen, L. G., K. Ma, Y. L. Ge, and F. R. Sun. 2017a. “Minimum Entropy Generation Path for an Irreversible Light-driven Engine with Reacting System and Linear Phenomenological Heat Transfer Law.” Environmental Engineering and Management Journal 16 (9): 2035–2043. doi:https://doi.org/10.30638/eemj.2017.211.
  • Chen, L. G., C. Wu, and F. R. Sun. 1999. “Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems.” Journal of Non-Equilibrium Thermodynamics 24 (4): 327–359. doi:https://doi.org/10.1515/JNETDY.1999.020.
  • Chen, L. G., S. J. Xia, and F. R. Sun. 2018a. “Entropy Generation Minimization for Isothermal Crystallization Processes with a Generalized Mass Diffusion Law.” International Journal of Heat and Mass Transfer 116: 1–8. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.001.
  • Chen, L. G., A. B. Yang, Z. H. Xie, H. J. Feng, and F. R. Sun. 2017b. “Constructal Entropy Generation Rate Minimization for Cylindrical Pin-fin Heat Sinks.” International Journal of Thermal Sciences 111: 168–174. doi:https://doi.org/10.1016/j.ijthermalsci.2016.08.017.
  • Chen, L. G., L. Zhang, S. J. Xia, and F. R. Sun. 2018c. “Entropy Generation Minimization for Hydrogenation of CO2 to Light Olefins.” Energy 147: 187–196. doi:https://doi.org/10.1016/j.energy.2018.01.050.
  • Cotton, K. C. 1993. Evaluating and Improving Steam Turbine Performance. New York: Cotton Fact, . Rexford, NY 12148 USA.
  • Dutta, A., A. K. Das, and S. Chakrabarti. 2013. “Study on the Effect of Cooling Water Temperature Rise on Loss Factor and Efficiency of a Condenser for a 210 MW Thermal Power Unit.” International Journal of Emerging Technology and Advanced Engineering 3 (3): 485–489.
  • Feng, H. J., L. G. Chen, Z. H. Xie, and F. R. Sun. 2015a. “Disc-point” Heat and Mass Transfer Constructal Optimization for Solid-gas Reactors Based on Entropy Generation Minimization.” Energy 83: 431–437. doi:https://doi.org/10.1016/j.energy.2015.02.040.
  • Feng, H. J., L. G. Chen, Z. H. Xie, and F. R. Sun. 2015b. “Constructal Entropy Generation Rate Minimization for Asymmetric Vascular Networks in a Disc-shaped Body.” International Journal of Heat and Mass Transfer 91: 1010–1017. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.045.
  • Geete, A. 2015a. “Exergy, Exergy Destruction Rate and Exergy Efficiency Analysis of Thermal Power Plants by Computer Software at Various Operating Conditions.” I-manager’s Journal on Future Engineering and Technology 11 (1): 7–22. doi:https://doi.org/10.26634/jfet.11.1.3655.
  • Geete, A. 2016b. “Performance Analysis of Thermal Power Plant under Various Operating Conditions: A Case Study.” MAYFEB Journal of Mechanical Engineering 1 (2016): 1–9.
  • Geete, A. 2016c. “Componentwise Thermodynamic Analysis of Thermal Power Plant by Designed Software.” Journal of Automation and Control Engineering 4 (4): 279–284. doi:https://doi.org/10.18178/joace.
  • Geete, A. 2017a. “Exergy, Entransy and Entransy Based Thermal Resistance Analyses of Double Pipe Heat Exchanger with Different Pipe Materials.” Heat Transfer Research 48 (18): 1625–1636. doi:https://doi.org/10.1615/HeatTransRes.2017015641.
  • Geete, A. 2017b. “Comparative Performance Analysis of Concentric Tube Type Heat Exchanger at Various Operating Conditions with Copper and Aluminum Tube Materials.” International Journal of Ambient Energy. doi:https://doi.org/10.1080/01430750.2017.1318783.
  • Geete, A. 2019a. “Application of Exergy and Entransy Concepts to Analyses Performance of Coal Fired Thermal Power Plant: A Case Study.” International Journal of Ambient Energy 1–12. doi:https://doi.org/10.1080/01430750.2019.1586762.
  • Geete, A. 2019b. “Analyses of Entransy Dissipation Ratio and Entropy Generation Ratio for Gas Power Cycles under Various Conditions: EDEG Software.” Heat Transfer Research 50 (1): 1–16. doi:https://doi.org/10.1615/HeatTransRes.v50.i1.
  • Geete, A. 2019d. “Exergy Analyses for Parabolic Solar Collector at Different Conditions: PAPSC Software.” Journal of Solar Energy Research 4 (1): 41–52.
  • Geete, A., and A. Bhargava. 2016a. “Combined Effect of Various Operating Loads, Number of Feed Water Heaters and Makeup Water Quantities on the Performance of Coal Fired Thermal Power Plant: A Case Study.” Cogent Engineering 3 (2015): 1–7. doi:https://doi.org/10.1080/23311916.2016.1218115.
  • Geete, A., A. Dubey, A. Sharma, and A. Dubey. 2018. “Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India).” Journal of Institute of Engineers India: Series C 100 (3): 455–460. doi:https://doi.org/10.1007/s40032-018-0455-5.
  • Geete, A., and A. I. Khandwawala. 2012. “Effect of Different Inlet Pressure Conditions on 120MW Thermal Power Plants and Generate Correction Curves.” VSRD International Journal of Mechanical, Automobile and Production Engineering 2 (8): 282–286.
  • Geete, A., and A. I. Khandwawala. 2013a. “Thermodynamic Analysis of 120MW Thermal Power Plant with Combined Effect of Constant Inlet Pressure (124.61 Bar) and Different Inlet Temperatures.” Case Studies in Thermal Engineering 1 (1): 17–25. doi:https://doi.org/10.1016/j.csite.2013.08.001.
  • Geete, A., and A. I. Khandwawala. 2013b. “Generate Correction Curves for 120MW Thermal Power Plant for Extraction Line Pressure Drop (Heater No. 6) with the Help of Designed Computer Aided Software.” International Journal of Mechanical Engineering Applications Research 4 (1): 229–233.
  • Geete, A., and A. I. Khandwawala. 2013c. “Exergy Analysis of 120MW Thermal Power Plant with Different Condenser Back Pressure and Generate Correction Curves.” International Journal of Current Engineering and Technology 3 (1): 164–167.
  • Geete, A., and A. I. Khandwawala. 2013d. “Thermodynamic Analysis of 120MW Thermal Power Plant by Designed Computer Aided Software for Different Inlet Temperature Conditions and Generate Correction Curves.” International Journal of Thermal Technologies 3 (1): 20–22.
  • Geete, A., and A. I. Khandwawala. 2013e. “Thermodynamic Analysis of 120MW Thermal Power Plant and Generate Correction Curves for Extraction Line Pressure Drop (Heater No. 5) with the Help of Designed Computer Aided Software.” International Journal of Mechanical Engineering 57 (2013): 14301–14304.
  • Geete, A., and A. I. Khandwawala. 2013f. “Generation of Correction Curve for Pressure Drop in Extraction Line for Heater Number 5 for 120MW Thermal Power Plant.” Journal of Mechanical Engineering 123 (2013): 153–157.
  • Geete, A., and A. I. Khandwawala. 2013g. “Generation of Correction Curves for Power and Heat Rate by Thermodynamic Analysis of Combined Effect of Inlet Pressure (123.14 Bar) and Different Inlet Temperatures on Thermal Power Plant.” Journal of Mechanical Engineering 61 (2013): 17059–17063.
  • Geete, A., and A. I. Khandwawala. 2014a. “Entropy Generation and Entransy Dissipation Analysis for Steam Power Plants Using Developed Computer-aided Software.” IUP Journal of Mechanical Engineering 7 (4): 31–57.
  • Geete, A., and A. I. Khandwawala. 2014b. “Thermodynamic Analysis of 120MW Thermal Power Plant with Combined Effect of Constant Inlet Pressure (127.06 Bar) and Different Condenser Back Pressures.” IUP Journal of Mechanical Engineering 7 (1): 25–46.
  • Geete, A., and A. I. Khandwawala. 2014c. “Exergy Analysis for 120MW Thermal Power Plant with Different Inlet Temperature Conditions.” International Journal of Research in Engineering and Technology 2 (1): 21–30.
  • Geete, A., and A. I. Khandwawala. 2014d. “Exergy Analysis for 120MW Thermal Power Plant with Different Inlet Pressure Conditions and Generate Exergy Outlet Curves for Different Components.” Asian Academic Research Journal of Multidisciplinary 1 (18): 234–247.
  • Geete, A., and A. I. Khandwawala. 2015b. “Thermodynamic Analysis of Thermal Power Plant with Combined Effect of Constant Inlet Temperature (507.78°c) and Different Inlet Pressures.” IUP Journal of Mechanical Engineering 8 (3): 38–49.
  • Geete, A., and A. I. Khandwawala. 2017c. “To Analyse the Combined Effect of Different Extraction Line Pressure Drops on the Performance of Coal Fired Thermal Power Plant.” International Journal of Ambient Energy 38 (4): 389–394. doi:https://doi.org/10.1080/01430750.2015.1121919.
  • Geete, A., S. Kothari, R. Sahu, P. Likhar, A. Saini, and A. Singh. 2016d. “Experimental Analysis on Fabricated Parabolic Solar Collector with Various Flowing Fluids and Pipe Materials.” International Journal of Renewable Energy Research 6 (4): 1454–1463.
  • Geete, A., J. Panchal, R. Mishra, R. Chhalotra, R. S. Rajput, and S. Waghe. 2015. “Experimental Analysis of Designed and Fabricated Helical Tube Type Heat Exchanger with Copper and Mild Steel Tube Materials.” Inventi Impact: Mechanical Engineering (2015c) (4): 183–188.
  • Geete, A., V. Patel, S. S. Tanwar, S. Kushwah, N. S. Lodhi, and V. Kushwah. 2017d. “Thermodynamic Analysis of Designed and Fabricated Shell and Tube Type Heat Exchanger by DSTHE Software: Kern Method.” International Journal of Ambient Energy. doi:https://doi.org/10.1080/01430750.2017.1303637.
  • Geete, A., and R. Sharma. 2019c. “Experimental Exergy Analyses on Fabricated Parabolic Solar Collector With/Without Preheater and Different Collector Materials.” International Journal of Ambient Energy 40 (6): 577–589. doi:https://doi.org/10.1080/01430750.2017.1422144.
  • Ibrahim, T. I., M. K. Mohammed, O. I. Awad, A. N. Abdalla, F. Basrawi, M. N. Mohammed, G. Najafi, and R. Mamat. 2018. “A Comprehensive Review on the Exergy Analysis of Combined Cycle Power Plants.” Renewable and Sustainable Energy Reviews 90: 835–850. doi:https://doi.org/10.1016/j.rser.2018.03.072.
  • Kaushik, S. C., V. S. Reddy, and S. K. Tyagi. 2011. “Energy and Exergy Analyses of Thermal Power Plants: A Review.” Renewable and Sustainable Energy Reviews 15: 1857–1872. doi:https://doi.org/10.1016/j.rser.2010.12.007.
  • Li, Z., M. Sheikholeslami, M. Jafaryar, A. Shafee, and A. J. Chamkha. 2018. “Investigation of Nanofluid Entropy Generation in a Heat Exchanger with Helical Twisted Tapes.” Journal of Molecular Liquids 266: 797–805. doi:https://doi.org/10.1016/j.molliq.2018.07.009.
  • Malakar, D., and A. Geete. 2018. “Application of Entropy and Entransy Concepts to Design Shell and Tube Type Surface Condenser at Different 4L/D Ratios for Maral Overseas Ltd.” International Journal of Ambient Energy 1–10. doi:https://doi.org/10.1080/01430750.2018.1490353.
  • Moran, M. J., and H. N. Shapiro. 2004. Fundamentals of Engineering Thermodynamics, Student Problem Set Supplement. 5th ed. Wiley, England.
  • Nian, Z. H., J. Z. Liu, and G. J. Liu. 2013. “Influence of Cooling Circulating Water Flow on Back Pressure Variation of Thermal Power Plant.” International Conference on Measuring Technology and Mechatronics Automation 5: 619–622.
  • Padilla, R. V., A. Fontalvo, G. Demirkaya, A. Martinez, and A. G. Quiroga. 2014. “Exergy Analysis of Parabolic through Solar Receiver.” Applied Thermal Engineering 67: 1–8. doi:https://doi.org/10.1016/j.applthermaleng.2014.03.053.
  • Parrott, J. 1978. “Theoretical Upper Limit to the Conversion Efficiency of Solar Energy.” Solar Energy 21 (3): 227–229. doi:https://doi.org/10.1016/0038-092X(78)90025-7.
  • Petela, R. 2003. “Exergy of Undiluted Thermal Radiation.” Solar Energy 74 (6): 469–488. doi:https://doi.org/10.1016/S0038-092X(03)00226-3.
  • Rafiee, M., A. Siadatan, E. Afiei, and E. Z. A. Abadi. 2012. “Improving the Efficiency of Thermal Power Plant Using Thermoelectric Material.” International Conference on Intelligent and Advanced Systems, Kuala Lumpur 1: 450–454.
  • Sharma, R., and A. Geete. 2017. “Experimental Analyses on Parabolic Solar Collector at Various Operating Conditions.” Universal Journal of Mechanical Engineering 5 (2): 25–34. doi:https://doi.org/10.13189/ujme.2017.050201.
  • Sukhatme, S. P., and J. K. Nayak. 2011. Solar Energy Principles of Thermal Collection and Storage. third ed. New Delhi, India: McGraw Hill Companies.
  • Tiwari, G. N. 2008. Solar Energy: Fundamentals, Design, Modelling and Applications. first ed. New Delhi, India: Narosa Book Distributors Pvt.
  • Vosough, A., A. Falahat, S. Vosough, H. N. Esfehani, A. Behjat, and R. N. Rad. 2011. “Improvement of Power Plant Efficiency with Condenser Pressure.” International Journal of Multidisciplinary Sciences and Engineering 2 (3): 38–43.
  • Yadav, R. 2007. “Steam and Gas Turbines and Power Plant Engineering”. New Delhi: Central Publishing House Allahabad.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.