89
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of performance and emission parameters of diesel engine using tyre pyrolysis oil

, &

References

  • Abd-Alla, G. H. 2002. “Using Exhaust Gas Recirculation in Internal Combustion Engines: A Review.” Energy Conversion and Management 43 (8): 1027–1042. doi:10.1016/S0196-8904(01)00091-7.
  • Agarwal, A. K., and K. Rajamanoharan. 2009. “Experimental Investigations of Performance and Emissions of Karanja Oil and Its Blends in a Single Cylinder Agricultural Diesel Engine.” January. Applied Energy, Elsevier 86 1: 106–112. doi:10.1016/j.apenergy.2008.04.008.
  • Agarwal, D., S. K. Singh, and A. K. Agarwal. 2011. “Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions, Deposits and Durability of a Constant Speed Compression Ignition Engine.” Applied Energy 88 (8): 2900–2907. doi:10.1016/j.apenergy.2011.01.066.
  • Aline, A., A. Acacio, Z. Ferreira, M. Z. Danianni, M. D. Ivo, N. Alessandro, and I. M. Luciana. 2013. “Optimization of the Extraction of Phenolic Compounds from Apples Using Response Surface Methodology.” Food Chemistry 149 (2014): 151–158. doi:10.1016/j.foodchem.2013.10.086.
  • Alonso, J. M., F. Alvarruiz, J. M. Deantes, L. Hernandez, V. Hernandez, and G. Molto. 2007. “Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emission.” IEEE Transactions 11 (1): 46–55. doi:10.1109/TEVC.2006.876364.
  • Baiju, B., M. K. Naik, and L. M. Das. 2009. “A Comparative Evaluation of Compression Ignition Engine Characteristics Using Methyl and Ethyl Esters of Karanja Oil.” Renew Energy 34 (9): 1616–1621. doi:10.1016/j.renene.2008.11.020.
  • Bala, M., and H. Balat. 2010. “Progress in Biodiesel Processing.” Applied Energy 87: 1815–1835. doi:10.1016/j.apenergy.2010.01.012.
  • Banapurmath, N. R., T. G. Tewari, and R. S. Hosmath. 2008. “Performance and Emission Characteristics of DI Compression Ignition Engine Operated on Honge, Jatropha and Sesame Oil Methyl Esters.” Renewable Energy 33 (10): 1982–1988. doi:10.1016/j.renene.2007.11.012.
  • Bezerra, M. A., R. E. Santelli, P. O. Eliane, S. V. Leonardo, and A. E. Luciane. 2008. “Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry.” Talanta 76 (5). doi:10.1016/j.talanta.2008.05.019.
  • Celik, V., and E. Arcaklioglu. 2005. “Performance Maps of a Diesel Engine.” Applied Energy 81 (3): 247–259. doi:10.1016/j.apenergy.2004.08.003.
  • Chen, H.-W., W. Kee, Wong, and X. Hongquan. 2012. “An Augmented Approach to the Desirability Function.” Journal of Applied Statisiics 39 (3). doi:10.1080/02664763.2011.605437.
  • Demirbas, A. 2005. “Biodiesel Production from Vegetable Oils via Catalytic and Non-catalytic Supercritical Methanol transesterification Methods.” Progress in Energy and Combustion Science 31 (5–6): 466–487. doi:10.1016/j.pecs.2005.09.001.
  • Farris, S., and L. Piergiovanni. 2009. “Optimization of Manufacture of Almond Paste Cookies Using Responsec Surface Methodology.” Journal of Food Process Engineering 32 (1): 64–87. doi:10.1111/j.1745-4530.2007.00203.x.
  • Ful-Chiang, W. 2007. “Optimimization of Correlataed Multiple Quality Characteristics Using Desirability Function.” Quality Engineering 17 (1): 119–126. doi:10.1081/QEN-200028725.
  • Gadhave, N. D., and S. H. Gawande. 2017. “Optimization of CI Engine Vibration Characteristics Operated on Jatropha Methyl Ester Using Taguchi and Multiple Regression Analysis.” The International Review of Mechanical Engineering 11 (6): 367–372. doi:10.15866/ireme.v11i6.12846.
  • Gadhave, N. D., and S. H. Gawande. 2018. “Optimizing Performance of the Jatropha Biodiesel Engine Using Taguchi Approach.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40: 235. doi:10.1007/s40430-018-1153-1.
  • Ganapathy, T., M. Murugesan, and R. P. Gakkhar. 2009. “Performance Optimization of Jatropha Biodiesel Engine Model Using Taguchi Approach.” Applied Energy 86 (11): 2476–2486. doi:10.1016/j.apenergy.2009.02.008.
  • Gothals, P. L., and B. R. Cho. 2012. “Extending the Desirability Function to Account for Variability Measures in Univariate and Multivariate Response Experiments.” Computers and Industrial Engineering 62 (2012): 457–468. doi:10.1016/j.cie.2011.10.012.
  • He, Z., J. Wang, J. Oh, and S. H. Park. 2010. “Robust Optimization for Multiple Responses Using Response Surface Methodology.” Applied Stochastic Models in Business and Industry 26 (2): 157–171. doi:10.1002/asmb.788.
  • Jiang, B. C., C. C. Wang, J. LU, C. H. Jen, and S. K. Fan. 2009. “Using Simulation Techniques to Determine Optimal Operational Region for Multi-response Problems.” International Journal of Production Research 47 (12): 3219–3230. doi:10.1080/00207540701823227.
  • Kalam, M., A. Husnawan, and M. Masjuki. 2003. “Exhaust Emission and Combustion Evaluation of Coconut Oil-powered Indirect Injection Diesel Engine.” Renew Energy 16 (6): 2405–2415. doi:10.1016/S0960-1481(03)00136-8.
  • Lucas, J. M. 2010. “Response Surface Methodology – Process and Product Optimization Using Designed Experiments.” Third Edition, Journal of Quality Technology 42 (2): 228–230. doi:10.1080/00224065.2010.11917819.
  • Luciana, V. C., M. M. Dezan, M. S. Camara, C. Hector, and C. Goechoe. 2014. “Experimental Design and Multiple Response Optimization Using the Desirability Function in Analytical Methods Development.” Talanta 124: 123–138. d oi:10-1 016/2014.01.034.
  • Morabet, M., A. Rhilassi, H. El Boujaady, M. El Bennani- Ziatni, and A. Taitai. 2017. “Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite.” Arabian Journal of Chemisty 10: S3292–S3302.
  • Murugan, A., C. Umrani, R. Subramanian, and N. Nedunchezhian. 2009. “Bio-diesel as an Alternative Fuel for Diesel Engines – A Review.” Renewable and Sustainable Energy Reviews 13: 653–662. doi:10.1016/j.rser.2007.10.007.
  • Najafi, G., B. Ghobadian, T. Tavakoli, and R. Buttsworth. 2009. “Performance and Exhaust Emissions of a Gasoline Engine with Ethanol Blended Gasoline Fuels Using Artificial Neural Network.” Applied Energy 86 (5): 630–639. doi:10.1016/j.apenergy.2008.09.017.
  • Owolabi, R. U., A. L. Adejumo, and A. F. Aderibigbe. 2012. “Biodiesel: Fuel for the Future (A Brief Review).” International Journal of Energy Engineering 2: 223–231. doi:10.5923/j.ijee.20120205.06.
  • Pandian, M., S. P. Sivapirakasam, and M. Udayakumar. 2011. “Investigation on the Effect of Injection System Parameters on the Performance and Emission Characteristics of a Twin Cylinder Compression Ignition Direct Injection Engine Fuelled with Pongamia Biodiesel—diesel Blend Using Response Surface Methodology.” Applied Energy 88 (8): 2663–2676. doi:10.1016/j.apenergy.2011.01.069.
  • Pechancová, V. 2017. “Renewable Energy Potential in the Automotive Sector: Czech Regional Case Study.” Journal of Security and Sustainability Issues 6 (4): 537–545. doi10.9770/jssi.
  • Pote,R.N.,andR.K. Patil, 2018.“Evaluation of Combustion and Emission Performance of Waste Tyre Pyrolysis Oil on Variable Compression Ratio, Single Cylinder Diesel Engine.” Proceedings of the International Conference on Industrial Engineering and Operations Management Bandung, Indonesia, March 6–8
  • Pote, R. N., and R. K. Patil. 2019. “Combustion and Emission Characteristics Analysis of Waste Tyre Pyrolysis Oil.” SN Applied Sciences 1 (4): 294. doi:10.1007/s42452-019-0308-8.
  • Pramanik, K. 2003. “Properties and Use of Jatropha Curcas Oil and Diesel Fuels Blends in Compression Ignition Engine.” International Journal of Renewable Energy 28 (3): 239–248doi:10.1016/S0960-1481(02)00027-7.
  • Purohit, G., and D. Misra. 2013. “Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method.” Hindawi Publishing Corporation Journal of Engineering Article ID 915357. doi:10.1155/2013/915357.
  • Raheman, H., and S. V. Ghadge. 2008. “Performance of Diesel Engine with Biodiesel at Varying Compression and Ignition Timing.” Fuel 87 (12). pp.2659–2666. doi:10.1016/j.fuel.2008.03.006.
  • Rahimipetroudi, I., K. Rashid, J. B. Yang, and S. K. Dong. 2019. “Use of Response Surface Methodology to Optimize NOx Emissions and Efficiency of W-type Regenerative Radiant Tube Burner under Plasma-assisted Combustion.” Journal of Cleaner Production. doi:10.1016/j.jclepro.2019.118626.
  • Ramadhas, A. S., S. Ayaraj, and C. Muraleedharan. 2004. “Use of Vegetable Oils as IC Engines Fuels—a Review.” Renew Energy 29 (5): 727–742. doi:10.1016/j.renene.2003.09.008.
  • Ramakrishnan, P., R. Kasimani, and M. S. Peer. 2018. “Peer Optimization in the Performance and Emission Parameters of a DI Diesel Engine Fueled with Pentanol Added Calophyllum Inophyllum/diesel Blends Using Response Surface Methodology.” Environmental Science and Pollution Research 25 (29): 29115–29128. doi:10.1007/s11356-018-2867-4.
  • Said, K., A. Mohamad, A. Mohamed, and M. Amin. 2016. “Overview on the Response Surface Methodology(RSM) in Extraction Processes.” Journal of Applied Science and Process Engineering 2 (1). doi:10.33736/jaspe.161.2015.
  • Sakthivel, R., K. Ramesh, S. J. Marshal, and K. K. Sadasivuni. 2019. “Prediction of Performance and Emission Characteristics of Diesel Engine Fuelled with Waste Biomass Pyrolysis Oil Using Response Surface Methodology.” Renewable Energy, Elsevier 136 (C): 91–103. doi:10.1016/j.renene.2018.12.109.
  • Sayin, C., and M. Canakci. 2009. “Effects of Injection Timing on the Engine Performance and Exhaust Emissions of a Dual-fuel Diesel Engine.” Energy Convers Manage 50: 203–213. doi:10.1016/j.enconman.2008.06.007.
  • Sayin, C., H. M. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci. 2007. “Performance and Exhaust Emissions of a Gasoline Engine Using Artificial Neural Network.” Applied Thermal Engineering 27 (1): 46–54. doi:10.1016/j.applthermaleng.2006.05.016.
  • Srivastava, A., and R. Prasad. 2000. “Triglycerides-Based Diesel Fuels.” Renewable and Sustainable Energy Reviews 4: 111–133. doi:10.1016/S1364-0321(99)00013-1.
  • Tumuluru, J. S., and D. J. Heikkila. 2019. “Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm Bioengineering.” Basel 6 (1): 12. doi:10.3390/bioengineering6010012.
  • Uludamar, E., E. Tosun, and K. Aydın. 2016. “Experimental and Regression Analysis of Noise and Vibration of a Compression Ignition Engine Fueled with Various Biodiesels.” Fuel 177: 326–333. doi:10.1016/j.fuel.2016.03.028.
  • Uslu, S. 2019. “Optimization of Diesel Engine Performance and Emission Parameters Operating Waste Tire Pyrolysis Oil–diesel Blends Using Response Surface Methodology.” Journal of Systems and Control Engineering. doi:10.1177/0959651819864851.
  • Venkatanrayan, B., and C. H. Ratnam. 2017. “Selection of Optimal Performance Parameters of DI Diesel Engine Using Taguchi Approach.” Biofuels. doi:10.1080/17597269.2017.1329492.
  • Wankhede, R. D., and T. K. Bhattacharya. 2017. “Pyrolysis Oil an Emerging Alternate Fuel for Future (Review).” Journal of Pharmacognosy and Phytochemistry 6 (6): 239–243.
  • Xue, J., E. Tony, A. Grif, and C. Hansen. 2011. “Effect of Biodiesel on Engine Performances and Emissions.” Renewable and Sustainable Energy Reviews 15 (2): 1098–1116. doi:10.1016/j.rser.2010.11.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.