219
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and testing of a compliant mechanism-based XYθ stage for micro/nanopositioning

&
Pages 1185-1194 | Received 25 Jan 2020, Accepted 15 Jun 2020, Published online: 13 Jul 2020

References

  • https://www.compliantmechanisms.byu.edu/about-compliant-mechanisms
  • Bharanidaran, R., and T. Ramesh. 2014. “Numerical Simulation and Experimental Investigation of a Topologically Optimized Compliant Microgripper.” Sensors and Actuators. A, Physical 205: 156–163. doi:10.1016/j.sna.2013.11.011.
  • Dong, W., L. N. Sun, and Z. J. Du. 2007. “Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators.” Sensors and Actuators 135: 250–256. doi:10.1016/j.sna.2006.07.011.
  • Gu, G. Y., L. M. Zhu, C. Y. Su, Ding, H., and Fatikow, S. 2016. “Modeling and Control of Piezo- Actuated Nanopositioning Stages: A Survey.” IEEE Transactions on Automation Science and Engineering 13 (1): 313–332. doi:10.1109/TASE.2014.2352364.
  • Hao, G., and J. Yu. 2014. “A Completely Kinematostatically Decoupled XY Compliant Parallel Manipulator through New Topology Structure.” Proceedings of the IFToMM Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Tianjin, China.
  • Li, Y., and Q. Xu. 2006. “A Novel Design and Analysis of A 2-dof Compliant Parallel Micromanipulator for Nanomanipulation.” IEEE Transactions on Automation Science and Engineering 3 (3): 247–254. doi:10.1109/TASE.2006.875533.
  • Li, Y., and Q. Xu. 2009. “Design and Analysis of a Totally Decoupled Flexure-based Xy Parallel Micromanipulator.” IEEE Transaction on Robot. 25 (3): 645–657. doi:10.1109/TRO.2009.2014130.
  • Lin, S., Y. Jia, I. P., Lei, and Q. Xu. 2012. “Design and Optimization of a Long-stroke Compliant Micropositioning Stage Driven by Voice Coil Motor.” Proceeding of the 12th In- ternational Conference on Control Automation Robotics & Vision (ICARCV), 1716–1721,Guangzhou, China.
  • Ling, M., J. Cao, Z. Jiang, and J. Lin. 2016. “Theoretical Modeling of Attenuated Displacement Amplification for Multistage Compliant Mechanism and Its Application.” Sensors and Actuators A Physical 249: 15–22. doi:10.1016/j.sna.2016.08.011.
  • Midha, A. 1994. “L. L. HowelL. A Method for the Design of Compliant Mechanisms with Small-length Flexural Pivots.” Transactions of the ASME 116: 280–290. doi:10.1115/1.2919359.
  • Polit, S., and J. Dong. 2011. “Development of a High-bandwidth Xy Nanopositioning Stage for High-rate Micro-/nanomanufacturing.” IEEE/ASME Transactions on Mechatronics 16 (4): 724–733. doi:10.1109/TMECH.2010.2052107.
  • Qin, Y., B. Shirinzadeh, Y. Tian, D. Zhang, and U. Bhagat. 2014. “Design and Computational Optimization of a Decoupled 2-dof Monolithic Mechanism.” IEEE/ASME Transactions on Mechatronics 19 (3): 872–881. doi:10.1109/TMECH.2013.2262801.
  • Qin, Y., B. Shirinzadeh, D. Zhang, and Y. Tian. 2013. “Design and Kinematics Modeling of a Novel 3-dof Monolithic Manipulator Featuring Improved Scott-russell Mechanisms.” Journal of Mechanical Design 135 (10): 101004. doi:10.1115/1.4024979.
  • Ramadan, A., T. Takubo, Y. Mae, K. Oohara, and T. Arai. 2009. “Developmental Process of a Chopstick-like Hybrid-structure Two-fingered Micromanipulator Hand for 3-D Manipulation of Microscopic Objects.” IEEE Transactions on Industrial Electronics 56: 1121–1135. doi:10.1109/TIE.2008.2008753.
  • Ramesh, T., R. Bharanidaran, and V. Gopal. 2014. “Design and Development of XY Micro-Positioning Stage Using Modified Topology Optimization Technique.” Applied Mechanics and Materials 592–594: 2220–2224. d oi:10. 4028 /ww w.scie ntific. net/A MM.592 -594. 2220.
  • Sun, X., W. Chen, Y. Tian, S. Fatikow, R. Zhou, J. Zhang, and M. Mikczinski. 2013. “A Novel Flexure-based Microgripper with Double Amplification Mechanisms for Micro/nano Manipulation.” Review of Scientific Instruments 84 (8): 085002. doi:10.1063/1.4817695.
  • Tian, Y., B. Shirinzadeh, D. Zhang, and G. Alici. 2009. “Development and Dynamic Modelling of a Flexure-based Scott–russell Mechanism for Nano-manipulation.” Mechanical Systems and Signal Processing 23 (3): 957–978. doi:10.1016/j.ymssp.2008.06.007.
  • Wang, H., and X. Zhang. 2008. “Input Coupling Analysis and Optimal Design of a 3-dof Compliant Micro-positioning Stage.” Mechanism and Machine Theory 43 (4): 400–410. doi:10.1016/j.mechmachtheory.2007.04.009.
  • Xu, Q., and Y. Li. 2011. “Analytical Modeling, Optimization and Testing of a Compound Bridge-type Compliant Displacement Amplifier.” Mechanism and Machine Theory 46 (2): 183–200. doi:10.1016/j.mechmachtheory.2010.09.007.
  • Yong, Y. K., S. S. Aphale, and S. R. Moheimani. 2009. “Design, Identification, and Control of a Flexure-Based Xy Stage for Fast Nanoscale Positioning.” IEEE Transaction on Nanotechnol 8 (1): 46–54. doi:10.1109/TNANO.2008.2005829.
  • Zhang, Y., K. K. Tan, and S. Huang. 2009. “Vision-servo System for Automated Cell Injection.” IEEE Transactions on Industrial Electronics 56: 231–238. doi:10.1109/TIE.2008.925771.
  • Zhu, W.-L., Z. Zhu, Y. Shi, X. Chen, Y. He, K. F. Ehmann, and B.-F. Ju. 2016a. “A Novel Piezoelectrically Actuated 2-dof Compliant Micro/nano-positioning Stage with Multi-level Amplification.” Review of Scientific Instruments 87 (10): 105006. doi:10.1063/1.4965880.
  • Zhu, W. L., Z. Zhu, Y. Shi, X. Wang, K. Guan, and B. F. Ju. 2016b. “Design, Modeling, Analysis and Testing of a Novel Piezo-actuated Xy Compliant Mechanism for Large Workspace Nano-Positioning.” Smart Materials and Structures 25 (11): 115033. doi:10.1088/0964-1726/25/11/115033.
  • Zhu, Z., X. Zhou, Z. Liu, R. Wang, and L. Zhu. 2014. “Development of a Piezoelectrically Actuated Two-degree-of-freedom Fast Tool Servo with Decoupled Motions for Micro-/nanomachining.” Precision Engineering 38 (4): 809–820. doi:10.1016/j.precisioneng.2014.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.