494
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Review of vortex tube: a sustainable and energy separation device for multi-purpose applications

Pages 27-55 | Received 02 Jan 2020, Accepted 26 Aug 2020, Published online: 09 Sep 2020

References

  • Acar, M. S., and O. Arslan. 2017. “Exergo-economic Evaluation of a New Drying System Boosted by Ranque-Hilsch Vortex Tube.” Applied Thermal Engineering 124: 1–16. doi:10.1016/j.applthermaleng.2017.06.010.
  • Ahlborn, B., J. Camire, and J. U. Keller. 1996. “Low-pressure Vortex Tubes.” Journal of Physics D: Applied Physics 29: 1469–1472. doi:10.1088/0022-3727/29/6/009.
  • Ahlborn, B., and J. M. Gordon. 2000. “The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle.” Journal of Applied Physics 88 (6): 3645–3653. doi:10.1063/1.1289524.
  • Ahlborn, B., J. U. Keller, and E. Rebhan. 1998. “The Heat Pump in a Vortex Tube.” Journal of Non-Equilibrium Thermodynamics 23 (2): 159–165. doi:10.1515/jnet.1998.23.2.159.
  • Ahlborn, B., and S. Groves. 1997. “Secondary Flow in a Vortex Tube.” Fluid Dynamics Research 21 (2): 73–86. doi:10.1016/S0169-5983(97)00003-8.
  • Akhmetov, D. G., T. D. Akhmetov, and V. A. Pavlov. 2018. “Flow Structure in a Ranque−Hilsch Vortex Tube.” Doklady Physics 63: 235–238. doi:10.1134/S1028335818060010.
  • Aljuwayhel, N. F., G. F. Nellis, and S. A. Klein. 2005. “Parametric and Internal Study of the Vortex Tube Using a CFD Model.” International Journal of Refrigeration 28 (3): 442–450. doi:10.1016/j.ijrefrig.2004.04.004.
  • Arbuzov, V. A., Y. N. Dubnishchev, A. V. Lebedev, M. K. Pravdina, and N. I. Yavorskii. 1997. “Observation of Large-scale Hydrodynamic Structures in a Vortex Tube and the Ranque Effect.” Technical Physics Letters 23 (12): 938–940. doi:10.1134/1.1261939.
  • Baz, A., and D. Uhler. 1986. “A Compressed Gas Powered Heating System for Underwater Divers.” Ocean Engineering 13 (3): 273–290. doi:10.1016/0029-8018(86)90019-3.
  • Baz, A., J. Gilheany, and A. Kalvitas. 1987. “Feasibility of Vortex Tube Assisted Environmental Control of an Underwater Research Habitat.” Ocean Engineering 15 (1): 34–54.
  • Baz, A., R. Johston, and D. Uhler. 1986. “Dynamics of Vortex Tube Assisted Hyperbaric Chambers.” Ocean Engineering 13 (4): 387–408. doi:10.1016/0029-8018(86)90012-0.
  • Bazgir, A. 2019. “Analyzing Separation Capacity Efficiency of A Binary Hydrocarbon System (Cyclohexane - N-Pentane) with the Help of Two Distinct Methods: Utilizing A Vortex Tube Separator and an Equilibrium Flash Stage (EFS).” Experimental Thermal and Fluid Science 109: 109853. doi:10.1016/j.expthermflusci.2019.109853.
  • Bazgir, A., M. Khosravi-Nikou, and A. Heydari. 2019. “Numerical CFD Analysis and Experimental Investigation of the Geometric Performance Parameter Influences on the Counter-flow Ranque-Hilsch Vortex Tube (C-RHVT) by Using Optimized Turbulence Model.” Heat Mass Transfer 55: 2559–2591. doi:10.1007/s00231-019-02578-1.
  • Bej, N., and K. P. Sinhamahapatra. 2014. “Exergy Analysis of a Hot Cascade Type Ranque- Hilsch Vortex Tube Using Turbulence Model.” International Journal of Refrigeration 45: 3–24. doi:10.1016/j.ijrefrig.2014.05.020.
  • Bondarenko, V. L., Y. М. Simonenko, and D. P. Tishko. 2020. “Generation of Cold and Heat in Vortex Tubes during Pressure Reduction of Natural Gas.” Chemistry Petrol Engineering 56: 272–279. doi:10.1007/s10556-020-00769-w.
  • Borissov, A. A., P. A. Kuibin, and V. L. Okulov. 1993. “Convective Heat Transfer and Its Action on the Ranque Effect in the Vortex Tube.” ASME Fluids Engineering Division: Experimental Numerical Flow Visualization 172: 195–200.
  • Bruno, T. J. 1992. “Applications of the Vortex Tube in Chemical Analysis.” Process Control and Quality 3. Amsterdam: Elsevier Science Publishers BV. 195–207.
  • Bruno, T. J. 1993. “Applications of the Vortex Tube in Chemical Analysis Part I: Introductory Principle.” American Laboratory 25: 15–20.
  • Celik, A., M. Yilmaz, and M. Kaya. 2017. “The Experimental Investigation and Thermodynamic Analysis of Vortex Tubes.” Heat Mass Transfer 53: 395–405. doi:10.1007/s00231-016-1825-2.
  • Celik, A., M. Yilmaz, and O. F. Yildiz. 2020. “Improvement of Diesel Engine Startability under Low Temperatures by Vortex Tubes.” Energy Reports 6: 17–27. doi:10.1016/j.egyr.2019.11.027.
  • Chatterjee, M., S. Mukhopadhyay, and P. K. Vijayan. 2018. “Species Separation in Ranque-Hilsch Vortex Tube Using Air as Working Fluid.” Heat Mass Transfer 54: 3559–3572. doi:10.1007/s00231-018-2386-3.
  • Cockerill, T. T. 1998. “Thermodynamics and Fluid Mechanics of a Ranque–Hilsch Vortex Tube”. PhD thesis, University of Cambridge.
  • Colgate, S. A., and J. R. Buchler. 2000. “Coherent Transport of Angular Momentum-the Ranque–Hilsch Tube a Paradigm, Astrophysical Turbulence and Convection.” Annals of the New York Academy of Sciences 898: 105–112. doi:10.1111/j.1749-6632.2000.tb06166.x.
  • da Silva, O. C., J. Q. Juvêncio, M. E. V. da Silva, and J. A. F. Magalhães. 2013. “Localized Cooling by Vortex Tube Powered by Solar PV.” In Proceedings of 22nd International Congress of Mechanical Engineering, COBEM-2013 ABCM publishers 2824–2831.
  • Deissler, R. G., and M. Perlmutter. 1958. “An Analysis of the Energy Separation in Laminar and Turbulent Compressible Vortex Flows.” In Proc Heat Transfer and Fluid Mechanics Institute. Stanford University Press
  • Deissler, R. G., and M. Permutter. 1960. “Analysis of the Flow and Energy Separation in a Turbulent Vortex.” International Journal of Heat and Mass Transfer 1 (2–3): 173–191. doi:10.1016/0017-9310(60)90021-1.
  • Devade, K. D., and A. T. Pise. 2017a. “Exergy Analysis of a Counter Flow Ranque–Hilsch Vortex Tube for Different Cold Orifice Diameters, L/D Ratios and Exit Valve Angles.” Heat Mass Transfer 53: 2017–2029. doi:10.1007/s00231-016-1962-7.
  • Devade, K. D., and A. T. Pise. 2017b. “Effect of Mach Number, Valve Angle and Length to Diameter Ratio on Thermal Performance in Flow of Air through Ranque Hilsch Vortex Tube.” Heat Mass Transfer 53: 161–168. doi:10.1007/s00231-016-1805-6.
  • Dreiman, N. I., and R. L. Bunch 2002. “Hermetic Compressor With Improved Motor Cooling”. International Compressor Engineering Conference. Paper 1545, Purdue University, Purdue.
  • Duspara, M., B. Kosec, M. Stoić, D. Kramar, and A. Stoić. 2013. “Application of Vortex Tube for Tool Cooling.” Journal of Production Engineering 16 (2): 41–44.
  • Dziubak, T., L. Bąkała, M. Karczewski, and M. Tomaszewski. 2020. “Numerical Research on Vortex Tube Separator for Special Vehicle Engine Inlet Air Filter.” Separation and Purification Technology 237: 116463. doi:10.1016/j.seppur.2019.116463.
  • Ebmeier, R. J., S. E. Whitney, A. Sarkar, M. Nelson, N. Padhye, G. Gogos, and H. J. Viljoen. 2004. “Ranque–Hilsch Vortex Tube Thermocycler for Fast DNA Amplification and Real-time Optical Detection, Papers in Biochemical Engineering.” Chemical and Biomolecular Engineering Research and Publications. Paper 1. http://digitalcommons.unl.edu/chemengbiochemeng/1
  • Eckert, E. R. G. 1987. “Cross Transport of Energy in Fluid Streams.” Heat Mass Transfer 21 (2–3): 73–81.
  • Eiamsa-arda, S., and P. Promvonge. 2008. “Review of Ranque–Hilsch Effects in Vortex Tubes.” Renewable and Sustainable Energy Reviews 12: 1822–1842. doi:10.1016/j.rser.2007.03.006.
  • Fazel Bakhsheshi, M., Y. Wang, and L. Keenliside. 2016. “A New Approach to Selective Brain Cooling by A Ranque-Hilsch Vortex Tube.” ICMx 4: 32. doi:10.1186/s40635-016-0102-5.
  • Frohlingsdorf, W., and H. Unger. 1999. “Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque–Hilsch Vortex Tube.” International Journal of Heat and Mass Transfer 42: 415–422. doi:10.1016/S0017-9310(98)00191-4.
  • Fulton, C. D. 1950. “Ranque’s Tube.” Refrigerator Engineering 58 (5): 473–479.
  • Gao, C. M., K. J. Bosschaart, J. C. H. Zeegers, and A. T. A. M. de Waele. 2005. “Experimental Study on a Simple Ranque-Hilsch Vortex Tube.” Cryogenics 45 (3): 173–183. doi:10.1016/j.cryogenics.2004.09.004.
  • Guillaume, D. W., and J. L. Jolly. 2001. “Demonstrating the Achievement of the Lower Temperatures with Two-stage Vortex Tubes.” The Review of Scientific Instruments 72 (8): 3446–3448. doi:10.1063/1.1384430.
  • Guo, X., and B. Zhang. 2019. “Experimental Investigation on a Novel Pressure-driven Heating System with Ranque–Hilsch Vortex Tube and Ejector for Pipeline Natural Gas Pressure Regulating Process.” Applied Thermal Engineering 152: 634–642. doi:10.1016/j.applthermaleng.2019.02.122.
  • Gupta, U. S., M. K. Joshi, and C. B. Pawar. 2012. “Experimental Performance Evaluation Of Counter Flow Vortex Tube.” Journal of Environmental Research and Development 7 (1A): 496–502.
  • Gutak. 2015. “Experimental Investigation and Industrial Application of Ranque-Hilsch Vortex Tube.” International Journal of Refrigeration 49: 93–98. doi:10.1016/j.ijrefrig.2014.09.021.
  • Gutsol, A. F. 1997. “The Ranque Effect.” Phys–Uspekhi 40 (6): 639–658. doi:10.1070/PU1997v040n06ABEH000248.
  • Gutsol, A. F., and J. A. Bakken. 1998. “A New Vortex Method of Plasma Insulation and Explanation of the Ranque Effect.” Journal of Physics D: Applied Physics 31: 704–711. doi:10.1088/0022-3727/31/6/018.
  • Hajdık, B., M. Lorey, J. Steınle, and K. Thomas. 1997. “Vortex Tube Can Increase Liquid Hydrocarbon Recovery at Plant Inlet.” Oil-Journal 8: :76–83.
  • Han, X., N. Li, K. Wu, Z. Wang, L. Tang, G. Chen, and X. Xu. 2013. “The Influence of Working Gas Characteristics on Energy Separation of Vortex Tube.” Applied Thermal Engineering 61: 171–177. doi:10.1016/j.applthermaleng.2013.07.027.
  • Hilsch, R. 1947. “The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process.” The Review of Scientific Instruments 18 (2): 108–113. doi:10.1063/1.1740893.
  • Hitesh, R. T., A. Monde, and D. P. Ashok. 2015. “Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube : A Review.” Renewable and Sustainable Energy Reviews 52: 1043–1071. doi:10.1016/j.rser.2015.07.198.
  • Im, S. Y., and S. S. Yu. 2011. “Charged Air Cooling with Vortex Tube for a Common-rail Diesel Engine.” Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering 225 (6): 771–778.
  • Jinggang, W., G. Xiaoxia, and J. Shanlin. 2009. “The Application of Vortex Tube in Deep Mine Cooling.” Proceedings of the 2009 International Conference on Energy and Environment Technology 1: 395–398.
  • Kalal, M., R. Matas, and J. Linhart. 2008. “Experimental Study and CFD Analysis on Vortex Tube”. 6th International Conference on Heat Transfer, Fluid Mechanics andThermodynamics, 30 June to 2 July 2008, Pretoria, South Africa.
  • Kartashev, A. L., M. A. Kartasheva, and E. V. Safonov. 2016. “Application of the Ranque-Hilsh Vortex Effect for Creation of the Evaporation Plant for Water Demineralization.” Procedia Engineering 150: 307–311. doi:10.1016/j.proeng.2016.07.008.
  • Kassner, R., and E. Knoernschild. 1948. “Friction Laws and Energy Transfer in Circular Flow”. GS-USAF Wright-Patterson air force base no. 78 Technical report no. FTR-2198-ND, Project no. LP-259.
  • Kaya, H., F. Günver, and V. Kirmaci. 2018. “Experimental Investigation of Thermal Performance of Parallel Connected Vortex Tubes with Various Nozzle Materials.” Applied Thermal Engineering 136: 287–292. doi:10.1016/j.applthermaleng.2018.02.105.
  • Kaya, H., O. Uluer, E. Kocaoğlu, and V. Kirmaci. 2019. “Experimental Analysis of Cooling and Heating Performance of Serial and Parallel Connected Counter-flow Ranque–Hilsch Vortex Tube Systems Using Carbon Dioxide as a Working Fluid.” International Journal of Refrigeration 106: 297–307. doi:10.1016/j.ijrefrig.2019.07.004.
  • Khodorkov, I. L., N. V. Poshernev,and, and M. A. Zhidkov. 2003. “The Vortex Tube – A Universal Device for Heating, Cooling, Cleaning, and Drying Gases and Separating Gas Mixtures.” Chemical and Petroleum Engineering 39 (7–8): 409–415. doi:10.1023/A:1026336813155.
  • Kolmes, E. J., V. I. Geyko, and N. J. Fisch. 2017. “Heat Pump Model for Ranque–Hilsch Vortex Tubes.” International Journal of Heat and Mass Transfer 107: 771–777. doi:10.1016/j.ijheatmasstransfer.2016.11.072.
  • Korkodinov, Y. A., S. N. Peshcherenko, and V. B. Esov. 2016. “Prediction of the Cooling of Cutting Zones by Means of Vortex Tubes in High-speed Machining.” Russian Engineering Research 36: 71–73. doi:10.3103/S1068798X16010123.
  • Kukis, V. S., and A. V. Raznoshinskaia. 2016. “Characteristics of the Diesel 4CHN13/15 Working Process with Exhaust Gases Recirculation and Their Cooling in the Vortex Tube.” Procedia Engineering 150: 1287–1290. doi:10.1016/j.proeng.2016.07.291.
  • Kukis, V. S., E. A. Omelchenko, and A. V. Raznoshinskaia. 2015. “Results of Vortex Tube Usage in Diesel Exhaust Gas Recirculation System.” Procedia Engineering 129: 151–155. doi:10.1016/j.proeng.2015.12.024.
  • Kurosaka, M., J. R. Goodmann, and J. Q. Chu. 1982. “Ranque-Hilsch Effect Revisited Temperature Separation Traced to Orderly Spinning Waves or ‘Vortex Whistle”. Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 3rd, American Institute of Aeronautics and Astronautics and American Society of Mechanical Engineers, St. Louis, MO.
  • Lay, J. E. 1959a. “An Experimental and Analytical Study of Vortex Flow Temperature Separation by Superposition of Spiral and Axial Flows: Part I.” Transactions ASME Journal of Heat Transfer 81 (4): 202–212. doi:10.1115/1.4008185.
  • Lay, J. E. 1959b. “An Experimental and Analytical Study of Vortex Flow Temperature Separation by Superposition of Spiral and Axial Flows: Part II.” Transactions ASME Journal of Heat Transfer 81 (4): 213–222. doi:10.1115/1.4008187.
  • Lebedinskii, K. V., N. E. Kurnosov, A. A. Nikolotov, and D. P. Alekseev. 2015. “Ionization of Air in a Ranque–Hilsch Vortex Tube and the Method of Obtaining Uni- and Bipolar Ionization.” Journal of Engineering Physics and Thermophysics 88: 6. doi:10.1007/s10891-015-1333-0.
  • Leontiev, A. I., and S. A. Burtsev. 2015. “Device for Separation of Vortex Gas-dynamic Energy.” Doklady Physics 60: 476–47. doi:10.1134/S1028335815100092.
  • Lewins, J., and A. Bejan. 1999. “Vortex Tube Optimization Theory.” Energy Journal 24: 931–943. doi:10.1016/S0360-5442(99)00039-0.
  • Li, M., C. Yu, and S. Shang. 2014. “Effect of Vortex Tube Structure on Yarn Quality in Vortex Spinning Machine.” Fibers and Polymers 15: 1786–1791. doi:10.1007/s12221-014-1786-3.
  • Linderstrom-Lang, C. U. 1964. “Gas Separation in the Ranque–Hilsch Vortex Tube.” International Journal of Heat and Mass Transfer 7: 1195–1206. doi:10.1016/0017-9310(64)90061-4.
  • Linhart, J., M. Kalal, and R. Matas. 2005. “Numerical Study of Vortex Tube Properties”. 16th International Symposium on Transport Phenomena, ISTP-16, Prague.
  • Liu, J., and Y. Kevin Chou. 2007. “On Temperatures and Tool Wear in Machining Hypereutectic Al–Si Alloys with Vortex-tube Cooling.” International Journal of Machine Tools & Manufacture 47: 635–645. doi:10.1016/j.ijmachtools.2006.04.008.
  • Liu, Y., and G. Jin 2012. “Vortex Tube Expansion Two-stage Transcritical CO2 Refrigeration Cycle”. 1st International Conference on Energy and Environmental Protection, Hohhot, China 516–517, 1219–1223.
  • Lorey, M., J. Steinle, and K. Thomas 1998. “Industrial Application of Vortex Tube Separation Technology Utilizing the Ranque-Hilsch Effect”. 1998 SPE European Petroleum Conference, The Hague, Netherlands.
  • Macha, D., M. Renganathan, and A. S. Arockiadoss. 2016. “A Novel Design of A Counter-flow Vortex Tube by Suitable Automation at Hot and Cold Ends.” Journal of Automation, Mobile Robotics & Intelligent Systems 10 (3): 34–37.
  • Majidi, D., H. Alighardashi, and F. Farhadi. 2018. “Best Vortex Tube Cascade for Highest Thermal Separation.” International Journal of Refrigeration 85: 282–291. doi:10.1016/j.ijrefrig.2017.10.006.
  • Majidi, D., H. Alighardashi, and F. Farhadi. 2019. “LPG Mass Separation by Vortex Tube Cascade and Its Economics.” Applied Thermal Engineering 148: 1139–1147. doi:10.1016/j.applthermaleng.2018.12.012.
  • Manimaran, R. 2016. “Computational Analysis of Energy Separation in a Counter-Flow Vortex Tube Based on Inlet Shape and Aspect Ratio.” Energy 107: 17–28. doi:10.1016/j.energy.2016.04.005.
  • Manimaran, R. 2017. “Computational Analysis of Flow Features and Energy Separation in a Counter-Flow Vortex Tube Based on Number of Inlets.” Energy 123: 564–578. doi:10.1016/j.energy.2017.02.025.
  • Manimaran, R., P. A. Ramakrishna, and M. Ramakrishna. 2014. “Experimental Investigation of Temperature Separation in a Counter-Flow Vortex Tube.” ASME Journal of Heat Transfer 136 (8): 082801. doi:10.1115/1.4027248.
  • Manohar, R., and R. Chetan. 2002. “Enrichment of Methane Concentration via Separation of Gases Using Vortex Tubes.” Journal of Energy Engineering 128 (1): 1–12. doi:10.1061/(ASCE)0733-9402(2002)128:1(1).
  • Martin, R. W., and K. W. Zilm. 2004. “Variable Temperature System Using Vortex Tube Cooling and Fiber Optic Temperature Measurement for Low Temperature Magic Angle Spinning NMR.” Journal of Magnetic Resonance (San Diego, Calif. : 1997) 168 (2): 202–209. doi:10.1016/j.jmr.2004.03.002.
  • Martynovskii, V. S., and V. P. Alekseev. 1956. “Investigation of the Vortex Thermal Separation Effect for Gases and Vapors.” Soviet Physics - Technical Physics 1: 2233–2243.
  • Matveev, K. I., and J. Leachman. 2019. “Numerical Investigation of Vortex Tubes with Extended Vortex Chambers.” International Journal of Refrigeration 108: 145–153. doi:10.1016/j.ijrefrig.2019.08.030.
  • Mohammadi, S., and F. Farhadi. 2014. “Experimental and Numerical Study of the Gas–gas Separation Efficiency in a Ranque–Hilsch Vortex Tube.” Separation and Purification Technology 138: 177–185. doi:10.1016/j.seppur.2014.10.022.
  • Mohiuddin, M., and S. Elbel. 2014. “A Fresh Look At Vortex Tubes Used As Expansion Device In Vapor Compression Systems”. International Refrigeration and Air Conditioning Conference, Paper 1393. http://docs.lib.purdue.edu/iracc/1393.
  • Nash, J. M. 1991. “Vortex Expansion Devices for High Temperature Cryogenics”. Proceedings of the intersocietyenergy conversion engineering conference. USA, 521–525.
  • Nellis, G. F., and S. A. Klein 2002. “The Application of Vortex Tubes to Refrigeration Cycles”. International Refrigeration and Air Conditioning Conference. Paper 537. http://docs.lib.purdue.edu/iracc/537.
  • Nian, L., G. Jiang, F. Lichen, L. Tang, and G. Chen. 2019. “Experimental Study of the Impacts of Cold Mass Fraction on Internal Parameters of a Vortex Tube.” International Journal of Refrigeration 104: 151–160. doi:10.1016/j.ijrefrig.2019.05.002.
  • Piralishvili, S. A., and V. M. Polyaev. 1996. “‘Flow and Thermodynamic Characteristics of Energy Separation in a Doublecircuit Vortex Tube—an Experimental Investigation.” International Journal of Thermofluid Science 12 (4): 399–410. doi:10.1016/0894-1777(95)00122-0.
  • Pongjet, P., and E.-A. Smith. 2005. “Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator.” Science Asia 31: 215–223. doi:10.2306/scienceasia1513-1874.2005.31.215.
  • Pourmahmoud, N., M. Rahimi, S. E. Rafiee, and A. Hassanzadeh. 2014. “Numerical Simulation of the Effect of Inlet Gas Temperature on the Energy Separation in a Vortex Tube.” Engineering Science and Technology, an International Journal 9 (1): 81–96.
  • Pourmahmoud, N., S. E. Rafiee, M. Rahimi, and A. Hassanzadeh. 2013. “Numerical Energy Separation Analysis on the Commercial Ranque-Hilsch Vortex Tube on Basis of Application of Different Gases.” Science Iran B 20 (5): 1528–1537.
  • Qyyum, M. A., F. Wei, A. Hussain, A. A. Noon, and M. Lee. 2018. “An Innovative Vortex-tube Turbo-expander Refrigeration Cycle for Performance Enhancement of Nitrogen-based Natural-gas Liquefaction Process.” Applied Thermal Engineering 144: 117–125. doi:10.1016/j.applthermaleng.2018.08.023.
  • Rafie, S. E., and M. M. Sadeghiazad. 2017. “Efficiency Evaluation of Vortex Tube Cyclone Separator.” Applied Thermal Engineering 114: 300–327. doi:10.1016/j.applthermaleng.2016.11.110.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2015. “3D Numerical Analysis on the Effect of Rounding off Edge Radius on Thermal Separation inside a Vortex Tube.” International Journal of Heat and Technology 33 (1): 83–90. doi:10.18280/ijht.330112.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2016a. “Three-dimensional Numerical Investigation of the Separation Process in a Vortex Tube at Different Operating Conditions.” Journal of Marine Science and Application 15: 157–165. doi:10.1007/s11804-016-1348-8.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2016b. “Heat and Mass Transfer between Cold and Hot Vortex Cores inside Ranque-hilsch Vortex Tube-optimization of Hot Tube Length.” International Journal of Heat and Technology 34 (1): 31–38. doi:10.18280/ijht.340105.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2016c. “Experimental Study and 3D CFD Analysis on the Optimization of Throttle Angle for a Convergent Vortex Tube.” Journal of Marine Science and Application 15: 388–404. doi:10.1007/s11804-016-1387-1.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2017a. “Experimental and 3D CFD Investigation on Heat Transfer and Energy Separation inside a Counter Flow Vortex Tube Using Different Shapes of Hot Control Valves.” Applied Thermal Engineering 110: 648–664. doi:10.1016/j.applthermaleng.2016.08.166.
  • Rafiee, S. E., and M. M. Sadeghiazad. 2017b. “Experimental and 3D-CFD Investigation on Optimization of the Air Separator Structural Parameters for Maximum Separation Efficiency.” Separation Science and Technology 52 (5): 903–929. doi:10.1080/01496395.2016.1267755.
  • Rafiee, S. E., S. Ayenehpour, and M. M. Sadeghiazad. 2016. “A Study on the Optimization of the Angle of Curvature for A Ranque–Hilsch Vortex Tube, Using Both Experimental and Full Reynolds Stress Turbulence Numerical Modelling.” Heat Mass Transfer 52: 337–350. doi:10.1007/s00231-015-1562-y.
  • Rahbar, N., M. Shateri, M. Taherian, and M. S. Valipour. 2015. “2D Numerical Simulation of a Micro Scale Ranque-hilsch Vortex Tube.” Journal of Heat and Mass Transfer Research 2: 39–48.
  • Ranque, G. J. 1933. “Expériences sur la détente giratoire avec productions simultanées d’un echappement d’air chaud et d’unechappement d’air froid.” Journal de Physique et le Radium 4 (7): 1125–1155.
  • Raterman, K. T., M. Mckellar, A. Podgomey, D. Stacey, and T. Turner 2001. “A Vortex Contactor for Carbon Dioxide Separations”. 1st National Conference on Carbon Sequestration, U.S.A, National Energy Technology Laboratory.
  • Rattanongphisat, W., and K. Thungthong. 2014. “Improvement Vortex Cooling Capacity by Reducing Hot Tube Surface Temperature: Experiment.” Energy Procedia 52: 1–9. doi:10.1016/j.egypro.2014.07.048.
  • Ricci, S. R., S. Montelpare, and V. D. Alessandro. 2009. “Numerical Simulation of Turbulent Flow in a Ranque-Hilsch Vortex Tube.” International Journal of Heat and Mass Transfer 52: 5496–5511. doi:10.1016/j.ijheatmasstransfer.2009.05.031.
  • Riu, K., J. Kim, and I. S. Choi. 2004. “Experimental Investigation on Dust Separation Characteristics of a Vortex Tube.” Transacation JSME Series B: Thermal Fluid Mechanics 47 (1): 29–36. doi:10.1299/jsmeb.47.29.
  • Sadeghiseraji, J., J. Moradicheghamahi, and A. Sedaghatkish. 2020. “Investigation of a Vortex Tube Using Three Different RANS-based Turbulence Models.” Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-020-09368-6.
  • Saha, D., J. C. H. Zeegers, and J. G. M. Kuerten. 2015. “Experiments on Water Droplet Separation in a Ranque–Hilsch Vortex Tube (RHVT).” Computational Methods in Multiphase Flow VIII 89: 117–126.
  • Scheper, G. W. 1951. “The Vortex Tube; Internal Flow Data and a Heat Transfer Theory.” Journal of ASRE RefrigerationEngineering 59: 985–989.
  • Selek, M., S. Tasdemir, K. Dincer, and S. Baskaya. 2011. “Experimental Examination of the Cooling Performance of Ranque-Hilsch Vortex Tube on the Cutting Tool Nose Point of the Turret Lathe through Infrared Thermography Method.” International Journal of Refrigeration 34: 807–815. doi:10.1016/j.ijrefrig.2010.11.008.
  • Sharma, K. G., A. P. Rao, and K. M. Murthy. 2017. “Numerical Analysis of A Vortex Tube: A Review.” Archives of Computational Methods in Engineering 24 (2): 251–280. doi:10.1007/s11831-016-9166-3.
  • Shmroukh, A. N., A. Radwan, A. Abdal-hay, A. A. Serageldin, and M. Nasr. 2019. “New Configurations for Sea Water Desalination System Using Ranque-Hilsch Vortex Tubes.” Applied Thermal Engineering 157: 113757. doi:10.1016/j.applthermaleng.2019.113757.
  • Sibulkin, M. 1962. “Unsteady, Viscous, Circular Flow, Part III. Application to the Ranque–Hilsch Vortex Tube.” Journal of Fluid Mechanics 12: 269–293. doi:10.1017/S0022112062000191.
  • Singh, G., and V. S. Sharma. 2017. “Analyzing Machining Parameters for Commercially Puretitanium (Grade 2), Cooled Using Minimum Quantity Lubrication Assisted by a Ranque-Hilsch Vortex Tube.” The International Journal, Advanced Manufacturing Technology 88: 2921–2928. doi:10.1007/s00170-016-8982-9.
  • Skye, H. M., G. F. Nellis, and S. A. Klein. 2006. “Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube.” International Journal of Refrigeration 29: 71–80. doi:10.1016/j.ijrefrig.2005.05.004.
  • Smith, E.-A., and P. Pongjet. 2006. “Numerical Prediction of Vortex Flow and Thermal Separation in a Subsonic Vortex Tube.” Journal of Zhejiang University SCIENCE A 7 (8): 1406–1415. doi:10.1631/jzus.2006.A1406.
  • Smith, E.-A., and P. Pongjet. 2007. “Numerical Investigation of the Thermal Separation in a Ranque-Hilsch Vortex Tube.” International Journal of Heat and Mass Transfer 50: 821–832. doi:10.1016/j.ijheatmasstransfer.2006.08.018.
  • Smith, E.-A., and P. Pongjet. 2008. “Numerical Simulation of Flow Field and Temperature Separation in a Vortex Tube.” International Communications in Heat and Mass Transfer 35: 937–947. doi:10.1016/j.icheatmasstransfer.2008.04.010.
  • Soni, Y. 1973. “A Parametric Study of the Ranque–Hilsch Tube”. PhD thesis, University of Idaho.
  • Stanescu, G., C. A. de Oliveira Cabral, and M. C. Santos. 2012. “Experimental Study On The Vortex Tube Potential To Increase Air Moisture Removal And Carrying Capability”. 15th International Conference on Experimental Mechanics. 2931 Porto, Portugal.
  • Stephan, K., S. Lin, M. Durst Huang, and H. D. Seher. 1983. “An Investigation on of Energy Separation in a Vortex Tube.” International Journal of Heat and Mass Transfer 26 (3): 341–348. doi:10.1016/0017-9310(83)90038-8.
  • Subudhi, S., and M. Sen. 2015. “Review of Ranque–Hilsch Vortex Tube Experiments Using Air.” Renewable and Sustainable Energy Reviews 52: 172–178. doi:10.1016/j.rser.2015.07.103.
  • Suzuki, M. 1960. “Theoretical and Experimental Studies on the Vortex-tube.” Science Papers of the Institute of Physical and Chemical Research (Japan) 54 (1): 43–87.
  • Syed, S., and M. Renganathan. 2019. “Numerical Investigations on Flow Characteristics and Energy Separation in a Ranque Hilsch Vortex Tube with Hydrogen as Working Medium.” International Journal of Hydrogen Energy 44 (51): 27825–27842. doi:10.1016/j.ijhydene.2019.08.239.
  • Thakare, H. R., and A. D. Parekh. 2020. “Experimental Investigation of Ranque—Hilsch Vortex Tube and Techno – Economical Evaluation of Its Industrial Utility.” Applied Thermal Engineering 169: 114934. doi:10.1016/j.applthermaleng.2020.114934.
  • Trofimov, V. M. 2000. “Physical Effect in Ranque Vortex Tubes.” JETP Letters 72 (5): 249–252. doi:10.1134/1.1324021.
  • Tyutyuma, V. D. 2016. “Influence of Thermal Processes on the Efficiency of the Energy Separation in a Ranque Vortex Tube.” Journal of Engineering Physics and Thermophysics 89: 1505–1513. doi:10.1007/s10891-016-1520-7.
  • Tyutyuma, V. D. 2019. “A Vortex Source in the Ranque Vortex Tube.” Journal of Engineering Physics and Thermophysics 92: 664–672. doi:10.1007/s10891-019-01975-x.
  • Upendra, B., P. J. Paul, S. Kasthurirengan, R. Karunanithi, S. N. Ram, K. Dinesh, and S. Jacob. 2005. “CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque-Hilsch Vortex Tube.” International Journal of Heat and Mass Transfer 48 (10): 1961–1973. doi:10.1016/j.ijheatmasstransfer.2004.12.046.
  • Van Deemter, J. J. 1952. “On the Theory of the Ranque–Hilsch Cooling Effect.” Applied Science Research, Netherlands 3 (3): 174–196. doi:10.1007/BF03184927.
  • Wang, Z., and K. O. Suen. 2020. “Numerical Comparisons of the Thermal Behaviour of Air and Refrigerants in the Vortex Tube.” Applied Thermal Engineering 164: 114515. doi:10.1016/j.applthermaleng.2019.114515.
  • Westley, R. 1954. The Bibliography and Survey of the Vortex Tube. College of Aeronautics Cranfield. Note No. 9.College of Aeronautics Publishers
  • Wu, Y. T., Y. Ding, Y. B. Ji, C. F. Ma, and M. C. Ge. 2007. “Modification and Experimental Research on Vortex Tube.” International Journal of Refrigeration 30: 1042–1049. doi:10.1016/j.ijrefrig.2007.01.013.
  • Xue, Y., M. Arjomandi, and R. Kelso. 2010. “A Critical Review of Temperature Separation in A Vortex Tube.” Experimental Thermal and Fluid Science 34: 1367–1374. doi:10.1016/j.expthermflusci.2010.06.010.
  • Yan, H., X. Qingxiao, Y. Zhao, and Y. Xue. 2020. “The Thermal Performance of a Novel Convergent Valveless Vortex Tube.” International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2020.07.007.
  • Yükse, S., and A. Onat. 2015. “Investigation of CNC Turning Parameters by Using a Vortex Tube Cooling System.” Acta Physica Polonica A 127 (4): 881–885. doi:10.12693/APhysPolA.127.881.
  • Yun, J., Y. Kim, and Y. Sangseok. 2018. “Feasibility Study of Carbon Dioxide Separation from Gas Mixture by Vortex Tube.” International Journal of Heat and Mass Transfer, Part A 126: :353– 361. doi:10.1016/j.ijheatmasstransfer.2018.04.150.
  • Yunpeng Xue, J. R., M. A. Binns, and H. Yan. 2019. “Experimental Investigation of the Flow Characteristics within a Vortex Tube with Different Configurations.” International Journal of Heat and Fluid Flow 75: :195–208. doi:10.1016/j.ijheatfluidflow.2019.01.005.
  • Yusof, M. H., H. Katanoda, and H. Morita. 2015. “Temperature and Pressure Measurements at Cold Exit of Counter-flow Vortex Tube with Flow Visualization of Reversed Flow.” Journal of Thermal Sciences 24: 67–72. doi:10.1007/s11630-015-0757-3.
  • Zahari Taha, H. A., T. M. Y. S. Salaam, Y. Tuan, S. Y. Phoon, C. F. Tan, and M. A. Akiah. 2013. “Vortex Tube Air Cooling: The Effect on Surface Roughness and Power Consumption in Dry Turning.” International Journal of Automotive and Mechanical Engineering 8: 1477–1586. doi:10.15282/ijame.8.2013.34.0122.
  • Zhang, B., and G. Xiangji. 2018. “Prospective Applications of Ranque–Hilsch Vortex Tubes to Sustainable Energy Utilization and Energy Efficiency Improvement with Energy and Mass Separation.” Renewable and Sustainable Energy Reviews 89: 135–150. doi:10.1016/j.rser.2018.02.026.
  • Zhidkov, M. A., V. A. Devisilov, and D. A. Zhidkov. 2015. “Thermodynamics of the Ranque-Hilsch Effect in the Three-flow Vortex Tubes.” Theoretical Foundations of Chemical Engineering 49: 523–531. doi:10.1134/S0040579515040211.
  • Zhuohuan, H., L. Rui, X. Yang, M. Yang, R. Day, and H. Wu. 2020. “Energy Separation for Ranque-Hilsch Vortex Tube: A Short Review.” Thermal Science and Engineering Progress 19: 100559. doi:10.1016/j.tsep.2020.100559.
  • Zin, K. K., A. Hansske, and F. Ziegler. 2010. “Modeling and Optimization of the Vortex Tube with Computational Fluid Dynamic Analysis.” Journal of Energy Research 1 (2): 193–196. doi:10.3844/erjsp.2010.193.196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.