74
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Transient stress and deformation analysis of a shear deformable FG rotating cylindrical shell made of AL-SIC subjected to thermo-mechanical loading

, , ORCID Icon &
Pages 279-294 | Received 15 Apr 2020, Accepted 21 Oct 2020, Published online: 18 Nov 2020

References

  • Arefi, M., A. R. Abbasi, and M. R. Vaziri Sereshk. 2016. “Two-dimensional Thermo Elastic Analysis of FG Cylindrical Shell Resting on the Pasternak Foundation Subjected to Mechanical and Thermal Loads Based on FSDT Formulation.” International Journal of Thermal Stresses 39 (5): 554–570. doi:10.1080/01495739.2016.1158607.
  • Arefi, M., R. Koohi Faegh, and A. Loghman. 2016. “The Effect of Axially Variable Thermal and Mechanical Loads on the 2D Thermoelastic Response of FG Cylindrical Shell.” International Journal of Thermal Stresses 39 (12): 1539–1559. doi:10.1080/01495739.2016.1217178.
  • Arefi, M., and G. H. Rahimi. 2012. “Comprehensive Thermoelastic Analysis of a Functionally Graded Cylinder with Different Boundary Conditions under Internal Pressure Using First Order Shear Deformation Theory.” Mechanika 18 (1): 5–13. doi:10.5755/j01.mech.18.1.1273.
  • Ayoubi, P., and A. Alibeigloo. 2017. “Three-dimensional Transient Analysis of FGM Cylindrical Shell Subjected to Thermal and Mechanical Loading.” Journal of Thermal Stresses 40 (9): 1166–1183. doi:10.1080/01495739.2017.1325720.
  • Babak Mirzavand, M., and R. eslami. 2008. “Thermoelastic Stability Analysis of Imperfect Functionally Graded Cylindrical Shells.” Journal of Mechanics of Materials and Structures 3 (8): 1561–1572. doi:10.2140/jomms.2008.3.1561.
  • Damircheli, M., and M. Azadi. 2011. “Temperature and Thickness Effects on Thermal and Mechanical Stresses of Rotating FG-disks.” Journal of Mechanical Science and Technology 25 (3): 827–836. doi:10.1007/s12206-011-0110-z.
  • De Leon, S., and F. Paris. 1987. “Analysis of Thermal Stresses in Plates with Boundary Element Method.” Engineering Analysis 4 (4): 199–203. doi:10.1016/0264-682X(87)90042-6.
  • Ghannad, M., and M. Zamani Nejad. 2013. “Elastic Solution of Pressurized Clamped-clamped Thick Cylindrical Shell Made of Functionally Graded Materials.” Journal of Theoretical and Applied Mechanics 51 (4): 1067–1079.
  • Hosseini Kordkheili, S. A., and R. Naghdabadi. 2007. “Thermoelastic Analysis of a Functionally Graded Rotating Disk.” Composite Structure 79: 508–516. doi:10.1016/j.compstruct.2006.02.010.
  • Hosseini, S. M., and M. Akhlaghi. 2009. “Analytical Solution in Transient Thermo-elasticity of Functionally Graded Thick Hollow Cylinders.” Mathematical Methods in the Applied Science 32: 2019–2034. doi:10.1002/mma.1126.
  • Jabbari, M., M. Meshkini, and M. R. Eslami. 2011. “Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Radially Symmetric Loads.” ISRN Mechanical Engineering 2011: 1–9. doi:10.5402/2011/291409.
  • Kardomateas, G. A. 1990. “The Initial Phase of Transient Thermal Stresses Due to General Boundary Thermal Loads in Orthotropic Hollow Cylinders.” Journal of Applied Mechanic 57: 719–724. doi:10.1115/1.2897082.
  • Loghman, A., A. Ghorbanpour Arani, A. R. Shajari, and S. Amir. 2011. “Time-dependent Thermoelastic Creep Analysis of Rotating Disk Made of Al–Sic Composite.” Archive of Applied Mechanics 81: 1853–1864. doi:10.1007/s00419-011-0522-3.
  • Loghman, A., M. Nasr, and M. Arefi. 2017. “Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads.” International Journal of Thermal Stresses 40 (6): 765–782. doi:10.1080/01495739.2017.1280380.
  • Manthena, V. R., and G. D. Kedar. 2017. “Transient Thermal Stress Analysis of a Functionally Graded Thick Hollow Cylinder with Temperature Dependent Material Properties.” Journal of Thermal Stresses 41 (5): 1–15.
  • Nezhad, A., R. A. Rahman, and A. Ayob. 2011. “Transient Analysis of Functionally Graded Cylindrical Shell under Impulse Local Loads.” Australian Journal of Basic and Applied Sciences 5 (12): 757–765.
  • Omidi Bidgoli, M., M. Arefi, and A. Loghman. 2018. “Thermoelastic Behaviour of FGM Rotating Cylinder Resting on Friction Bed Subjected to a Thermal Gradient and an External Torque.” Australian Journal of Mechanical Engineering 1–9. doi:10.1080/14484846.2018.1552736.
  • Omidi Bidgoli, M., A. Loghman, and M. Arefi. 2019a. “The Effect of Grading Index on Two-dimensional Stress and Strain Distribution of FG Rotating Cylinder Resting on a Friction Bed under Thermomechanical Loading.” Journal of Stress Analysis 3 (2): 75–82.
  • Omidi Bidgoli, M., A. Loghman, and M. Arefi. 2019b. “ThreeDimensional Thermo-Elastic Analysis of a Rotating Cylindrical Functionally Graded Shell Subjected to Mechanical and Thermal Loads Based on the FSDT Formulation.” Journal of Applied Mechanics and Technical Physics 60 (5): 899–907. doi:10.1134/S0021894419050134.
  • Ootao, Y., and M. Ishihara. 2014. “Transient Thermoelastic Analysis for a Multilayered Hollow Cylinder with Piecewise Power Law Nonhomogeneity Due to Asymmetric Surface Heating.” Acta Mechanic 225: 2903–2922. doi:10.1007/s00707-014-1204-3.
  • Ootao, Y., and Y. tanigawa. 2006. “Transient Thermoelastic Analysis a Functionally Graded Hollow Cylinder.” Journal of Thermal Stresses 29 (11): 1031–1046. doi:10.1080/01495730600710356.
  • Pakade, R., T. Dhakate, and K. Namdeo. 2019. “A. Transient Thermoelastic Analysis in A Semi-infinite Solid Cylinder with Laser Consecutive Pulses.” Journal of Computer and Mathematical Sciences 10 (3): 467–478. doi:10.29055/jcms/1028.
  • Peng, X.-L., and L. Xian-Fang. 2010. “Transient Response of Temperature and Thermal Stresses in a Functionally Graded Hollow Cylinder.” Journal of Thermal Stresses 33 (5): 485–500. doi:10.1080/01495731003659034.
  • Praveen, G. N., and J. N. Reddy. 1998. “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-metal Plates.” International Journal of Solid and Structures 35: 4457–4476. doi:10.1016/S0020-7683(97)00253-9.
  • Praven, G. N., and J. N. Reddy. 1998. “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-metal Plates.” International Journal of Solids and Structures 35 (33): 4457–4476. doi:10.1016/S0020-7683(97)00253-9.
  • Schneider, P. J. 1955. “Variation of Maximum Thermal Stress in Free Plates.” Journal of Aeronautical Sciences 22: 872–873.
  • Sugano, Y. 1979. “Transient Thermal Stresses in Transversely Isotropic Finite Circular Cylinder Due to an Arbitrary Internal Heat-generation.” International Journal of Engineering Science 17: 927–939. doi:10.1016/0020-7225(79)90034-X.
  • Tahani, M., A. R. Setoodeh, and E. Salehi. 2013. “Three-dimensional Transient Analysis of Functionally Graded Cylindrical Shells Subjected to Asymmetric Dynamic Pressure.” Science and Engineering of Composite Material 20 (1): 75–85. doi:10.1515/secm-2012-0047.
  • Tang, S. 1968. “Thermal Stresses in Temperature Dependent Isotropic Plates.” Journal Spacecraft 5 (8): 987–990. doi:10.2514/3.29403.
  • Vaziri, S. A., M. Ghannad, and O. Anwar Beg. 2019. “Exact Thermoelastic Analysis of a Thick Cylindrical Functionally Graded Material Shell under Unsteady Heating Using First Order Shear Deformation Theory.” Heat Transfer—Asian Research 48(5): 1–24.
  • Yaghoobi, M. P., and M. Ghannad. 2020. “Electro-elastic Analysis of Functionally Graded Piezoelectric Variable Thickness Cylindrical Shells Using a First-order Electric Potential Theory and Perturbation Technique.” Journal of Intelligent Material Systems and Structures 31 (17): 1–25.
  • Yang, Y.-C., T.-S. Wang, and C.-K. Chen. 1986. “Thermoelastic Transient Response of an Infinitely Long Annular Cylinder.” Journal of Thermal Stresses 9 (1): 19–30. doi:10.1080/01495738608961884.
  • Zamani Nejad, M., and A. Afshin. 2013. “Thermoelastic Transient Response of Rotating Thick Cylindrical Shells under General Boundary Conditions.” International Research Journal of Applied and Basic Sciences 4 (9): 2796–2809.
  • Zhang, J.-H., G. Z. Li, and S.-R. Li. 2015. “Analysis of Transient Displacements for a Ceramic–metal Functionally Graded Cylindrical Shell under Dynamic Thermal Loading.” Ceramics International 41: 12378–12385. doi:10.1016/j.ceramint.2015.06.070.
  • Zhao, X., and K. M. Liew. 2009. “Geometrically Nonlinear Analysis of Functionally Graded Shells.” International Journal of Mechanical Sciences 51: 131–144. doi:10.1016/j.ijmecsci.2008.12.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.