121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exergy performance assessment of direct steam generation with glasshouse enclosed parabolic trough installation used for solar thermal Enhanced Oil Recovery (EOR) application

ORCID Icon & ORCID Icon
Pages 610-627 | Received 26 Nov 2020, Accepted 17 Feb 2021, Published online: 08 Mar 2021

References

  • Abdulhamed, A. J., Adam, N.M., Ab-Kadir, M.Z.A., and A.A. Haruddin. 2018. “Review of Solar Parabolic-trough Collector Geometrical and Thermal Analyses, Performance, and Applications”. Renewable and Sustainable Energy Reviews 91: 822–831. doi:10.1016/j.rser.2018.04.085.
  • Adibhatla, S., and S. C. Kaushik. 2017. “Energy, Exergy and Economic (3E) Analysis of Integrated Solar Direct Steam Generation Combined Cycle Power Plant.” Sustainable Energy Technologies and Assessments 20: 88–97. doi:10.1016/j.seta.2017.01.002.
  • Afsar, C., and S. Akin. 2016. “Solar Generated Steam Injection in Heavy Oil Reservoirs: A Case Study.” Renewable Energy 91: 83–89. doi:10.1016/j.renene.2016.01.047.
  • Akbari Vakilabadi, M., M. Bidi, and A. F. Najafi. 2018. “Energy, Exergy Analysis and Optimization of Solar Thermal Power Plant with Adding Heat and Water Recovery System.” Energy Conversion and Management 171: 1639–1650. doi:10.1016/j.enconman.2018.06.094.
  • Alguacil, M., Prieto, C.,Rodriguez, A., and J. Lohr. 2014. “Direct Steam Generation in Parabolic Trough Collectors”. Energy Procedia 49: 21–29. doi:10.1016/j.egypro.2014.03.003.
  • Allouhi, A., Benzakour, A.M., Saidur, R., Kousksou, T., and A. Jamil. 2018. “Energy and Exergy Analyses of a Parabolic Trough Collector Operated with Nanofluids for Medium and High Temperature Applications”. Energy Conversion and Management 155: 201–217. doi:10.1016/j.enconman.2017.10.059.
  • Al-Sulaiman, F. A. 2014. “Exergy Analysis of Parabolic Trough Solar Collectors Integrated with Combined Steam and Organic Rankine Cycles.” Energy Conversion and Management 77: 441–449. doi:10.1016/j.enconman.2013.10.013.
  • AlZahrani, A. A., and I. Dincer. 2018. “Energy and Exergy Analyses of a Parabolic Trough Solar Power Plant Using Carbon Dioxide Power Cycle.” Energy Conversion and Management 158: 476–488. doi:10.1016/j.enconman.2017.12.071.
  • Azzouzi, D., Bourorga, H.E., Belainine, K.A., and B. Boumeddane. 2018. “Experimental Study of a Designed Solar Parabolic Trough with Large Rim Angle”. Renewable Energy 125: 495–500. doi:10.1016/j.renene.2018.01.041.
  • Behar, O., A. Khellaf, and K. Mohammedi. 2015. “A Novel Parabolic Trough Solar Collector Model – Validation with Experimental Data and Comparison to Engineering Equation Solver (EES).” Energy Conversion and Management 106: 268–281. doi:10.1016/j.enconman.2015.09.045.
  • Bellos, E., I. Daniil, and C. Tzivanidis. 2018. “Multiple Cylindrical Inserts for Parabolic Trough Solar Collector.” Applied Thermal Engineering 143: 80–89. doi:10.1016/j.applthermaleng.2018.07.086.
  • Bellos, E., and C. Tzivanidis. 2017. “A Detailed Exergetic Analysis of Parabolic Trough Collectors.” Energy Conversion and Management 149: 275–292. doi:10.1016/j.enconman.2017.07.035.
  • Bellos, E., and C. Tzivanidis. 2018. “Energetic and Exergetic Evaluation of a Novel Trigeneration System Driven by Parabolic Trough Solar Collectors.” Thermal Science and Engineering Progress 6: 41–47. doi:10.1016/j.tsep.2018.03.008.
  • Bierman, B.,Treynor, C., O’Donnell, J., Lawrence, M., Chandra, M., Farver, A., von Berhens, P., and W. Lindsay. 2014. “Performance of an Enclosed Trough EOR System in South Oman”. Energy Procedia 49: 1269–1278. doi:10.1016/j.egypro.2014.03.136.
  • Bierman, B., O’Donnell, J., Burke, R., McCormick, M., and W.Lindsay. 2014. “Construction of an Enclosed Trough EOR System in South Oman”. Energy Procedia 49: 1756–1765. doi:10.1016/j.egypro.2014.03.186.
  • Chafie, M., M. F. Ben Aissa, and A. Guizani. 2018. “Energetic End Exergetic Performance of a Parabolic Trough Collector Receiver: An Experimental Study.” Journal of Cleaner Production 171: 285–296. doi:10.1016/j.jclepro.2017.10.012.
  • Costa, V. A. F. 2016. “On the Exergy Balance Equation and the Exergy Destruction.” Energy 116: 824–835. doi:10.1016/j.energy.2016.10.015.
  • De Sá, A. B., Pigozzo F, V.C., Tadrist, L., and J.C. Passos. 2018. “Direct Steam Generation in Linear Solar Concentration: Experimental and Modeling Investigation – A Review”. Renewable and Sustainable Energy Reviews 90: 910–936. doi:10.1016/j.rser.2018.03.075.
  • Dincer, I., and Y. A. Cengel. 2001. “Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering.” Entropy 3 (3): 116–149. doi:10.3390/e3030116.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar Engineering of Thermal Processes. 4 ed. New Jersey: John Wiley & Sons, Inc., Hoboken.
  • Ferchichi, S., Kessentini, H., Morales R, S., Rigola, J., Bouden, C., and A. Oliva. 2019. “Thermal and Fluid Dynamic Analysis of Direct Steam Generation Parabolic Trough Collectors”. Energy Conversion and Management 196: 467–483. doi:10.1016/j.enconman.2019.05.107.
  • Gauché, P. 2016. “Spatial-temporal Model to Evaluate the System Potential of Concentrating Solar Power Towers in South Africa.” In Faculty of Engineering at Stellenbosch University. https://scholar.sun.ac.za.
  • Gauché, P., Rudman, J., Mabaso, M., Landman, W.A., von B, T.W, and A.C. Brent. 2017. “System Value and Progress of CSP”. Solar Energy 152: 106–139. doi:10.1016/j.solener.2017.03.072.
  • Getee, A. 2020. “Performance Analyses of Coal-fired Thermal Power Plant Using Parabolic Solar Collectors for Feed Water Heaters.” Australian Journal of Mechanical Engineering 1–12. doi:10.1080/14484846.2019.1706226.
  • GlassPointSolar. 2015. “Solar Energy in Oman - Miraah | GlassPoint Solar” Accessed 28 June 2015. https://www.glasspoint.com/miraah/
  • GlassPointSolar. 2019. “Solar Energy Projects for Industry | GlassPoint Solar” Accessed. https://www.glasspoint.com/projects/
  • Grądziel, S. 2019. “Analysis of Thermal and Flow Phenomena in Natural Circulation Boiler Evaporator.” Energy 172: 881–891. doi:10.1016/j.energy.2019.02.003.
  • Guo, J., X. Huai, and Z. Liu. 2016. “Performance Investigation of Parabolic Trough Solar Receiver.” Applied Thermal Engineering 95: 357–364. doi:10.1016/j.applthermaleng.2015.11.035.
  • Gupta, M. K., and S. C. Kaushik. 2010. “Exergy Analysis and Investigation for Various Feed Water Heaters of Direct Steam Generation Solar–thermal Power Plant.” Renewable Energy 35 (6): 1228–1235. doi:10.1016/j.renene.2009.09.007.
  • Hossain, M. A., H. M. M. Afroz, and A. Miyara. 2015. “Two-phase Frictional Multiplier Correlation for the Prediction of Condensation Pressure Drop inside Smooth Horizontal Tube.” Procedia Engineering 105: 64–72. doi:10.1016/j.proeng.2015.05.008.
  • Jansen, S., and N. Woudstra. 2010. “Understanding the Exergy of Cold: Theory and Practical Examples.” International Journal of Exergy 7 (6): 693–713. doi:10.1504/IJEX.2010.035516.
  • Kalogirou, S. A., Karellas, S.,Badescu, V., and K. Braimakis. 2016. “Exergy Analysis on Solar Thermal Systems: A Better Understanding of Their Sustainability”. Renewable Energy 85: 1328–1333. doi:10.1016/j.renene.2015.05.037.
  • Kalogirou, S. A.,Karellas, S., Braimakis, K., Stanciu,C., and V. Badescu. 2016. “Exergy Analysis of Solar Thermal Collectors and Processes”. Progress in Energy and Combustion Science 56: 106–137. doi:10.1016/j.pecs.2016.05.002.
  • Kargar, M. R., E. Baniasadi, and M. Mosharaf-Dehkordi. 2018. “Numerical Analysis of a New Thermal Energy Storage System Using Phase Change Materials for Direct Steam Parabolic Trough Solar Power Plants.” Solar Energy 170: 594–605. doi:10.1016/j.solener.2018.06.024.
  • Kaushik, S. C., V. S. Reddy, and S. K. Tyagi. 2011. “Energy and Exergy Analyses of Thermal Power Plants: A Review.” Renewable and Sustainable Energy Reviews 15 (4): 1857–1872. doi:10.1016/j.rser.2010.12.007.
  • Kim, S.-M., and I. Mudawar. 2012. “Universal Approach to Predicting Two-phase Frictional Pressure Drop for Adiabatic and Condensing Mini/micro-channel Flows.” International Journal of Heat and Mass Transfer 55 (11–12): 3246–3261. doi:10.1016/j.ijheatmasstransfer.2012.02.047.
  • Li, L., Sun, J., Li, Y.,He, Y.L., and H. Xu.2019. “Transient Characteristics of a Parabolic Trough Direct-steam-generation Process”. Renewable Energy 135: 800–810. doi:10.1016/j.renene.2018.12.058.
  • Li, X.,Xu, E., Ma, L., Song, S., and L. Xu. 2019b. “Modeling and Dynamic Simulation of a Steam Generation System for a Parabolic Trough Solar Power Plant”. Renewable Energy 132: 998–1017. doi:10.1016/j.renene.2018.06.094.
  • Mawire, A., and S. H. Taole. 2014. “Experimental Energy and Exergy Performance of a Solar Receiver for a Domestic Parabolic Dish Concentrator for Teaching Purposes.” Energy for Sustainable Development 19: 162–169. doi:10.1016/j.esd.2014.01.004.
  • Mohammadi, A., Ahmadi, M.H., Bidi, M., Ghazvini, M., and T. Ming. 2018. “Exergy and Economic Analyses of Replacing Feedwater Heaters in a Rankine Cycle with Parabolic Trough Collectors”. Energy Reports 4: 243–251. doi:10.1016/j.egyr.2018.03.001.
  • Odeh, S. D., G. L. Morrison, and M. Behnia. 1998. “Modelling of Parabolic Trough Direct Steam Generation Solar Collectors.” Solar Energy 62 (6): 395–406. doi:10.1016/S0038-092X(98)00031-0.
  • Padilla, R. V., Fontalvo, A., Demirkaya, G., Martinez, A., and A.G. Quiroga. 2014. “Exergy Analysis of Parabolic Trough Solar Receiver.” Applied Thermal Engineering 67 (1–2): 579–586. DOI:10.1016/j.applthermaleng.2014.03.053.
  • Petela, R. 2003. “Exergy of Undiluted Thermal Radiation.” Solar Energy 74 (6): 469–488. doi:10.1016/S0038-092X(03)00226-3.
  • Ramesh, V. K., and V. Chintala. 2020. “Glasshouse-enclosed Parabolic Trough for Direct Steam Generation for Solar Thermal-enhanced Oil Recovery (EOR) – Energy Performance Assessment.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–24.
  • Ramesh, V. K., and V. Chintala. 2021. “Data Sets for Energy and Exergy Analysis for Glasshouse Enclosed Parabolic Trough Installations.”
  • Ramesh, V. K., V. Chintala, and S. Kumar. 2020. “Direct Steam Generation by an Enclosed Solar Parabolic Trough for Enhanced Oil Recovery.” In Recent Advances in Mechanical Infrastructure, edited by A. K.Parwani and PL.Ramkumar, 189–198. Singapore: Springer Nature.
  • Ramesh, V. K., V. Chintala, and K. Suresh. 2019. “Recent Developments, Challenges and Opportunities for Harnessing Solar Renewable Energy for Thermal Enhanced Oil Recovery (EOR).” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18.
  • Ravelli, S., Franchini, G., Perdichizzi, A.,Rinaldi, S., and V.E. Valcarenghi. 2016. “Modeling of Direct Steam Generation in Concentrating Solar Power Plants”. Energy Procedia 101: 464–471. doi:10.1016/j.egypro.2016.11.059.
  • Razeghi, S. A., V. Mitrovic, and S. Adjei Marfo. 2017. “The Influence of Steam Injection for Enhanced Oil Recovery (EOR) on the Quality of Crude Oil.” Petroleum Science and Technology 35 (13): 1334–1342. doi:10.1080/10916466.2017.1327970.
  • Reda, I., and A. Andreas. 2008. “Solar Position Algorithm for Solar Radiation Applications.”Colorado. 40.
  • Reddy, K. S., C. S. Ajay, and B. Nitin Kumar. 2018. “Sensitivity Study of Thermal Performance Characteristics Based on Optical Parameters for Direct Steam Generation in Parabolic Trough Collectors.” Solar Energy 169: 577–593. doi:10.1016/j.solener.2018.03.088.
  • Reddy, V. S., Kaushik, S.C., Tyagi, S.K., and N. Panwar. 2010. “An Approach to Analyse Energy and Exergy Analysis of Thermal Power Plants: A Review.” Smart Grid and Renewable Energy 01 (3): 143–152. DOI:10.4236/sgre.2010.13019.
  • Rocco, M. V., E. Colombo, and E. Sciubba. 2014. “Advances in Exergy Analysis: A Novel Assessment of the Extended Exergy Accounting Method.” Applied Energy 113: 1405–1420. doi:10.1016/j.apenergy.2013.08.080.
  • Sadaghiyani, O., M. Boubakran, and A. Hassanzadeh. 2018. “Energy and Exergy Analysis of Parabolic Trough Collectors.” International Journal of Heat and Technology 36 (1): 147–158. doi:10.18280/ijht.360120.
  • Salgado Conrado, L., A. Rodriguez-Pulido, and G. Calderón. 2017. “Thermal Performance of Parabolic Trough Solar Collectors.” Renewable and Sustainable Energy Reviews 67: 1345–1359. doi:10.1016/j.rser.2016.09.071.
  • Shanmugam, S., A. Veerappan, and M. Eswaramoorthy. 2014. “An Experimental Evaluation of Energy and Exergy Efficiency of a Solar Parabolic Dish Thermoelectric Power Generator.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (17): 1865–1870. doi:10.1080/15567036.2011.578110.
  • Wang, Q.,Hu, M., Yang, H., Cao, J.,Li, J., Su, Y., and G. Pei. 2019. “Energetic and Exergetic Analyses on Structural Optimized Parabolic Trough Solar Receivers in a Concentrated Solar-thermal Collector System”. Energy 171: 611–623. doi:10.1016/j.energy.2018.12.211.
  • Willwerth, L., Feldhoff, J.F., Kruger, D., Keller, L., Eickhoff, M., Kruger, J., Pandian, Y., Tiedemann, J., Succo, M., and A. Khenissi. 2018. “Experience of Operating a Solar Parabolic Trough Direct Steam Generation Power Plant with Superheating”. Solar Energy 171: 310–319. doi:10.1016/j.solener.2018.06.089.
  • Xu, Y., Fang, X., Su, X., Zhou, Z., and W. Chen. 2012. “Evaluation of Frictional Pressure Drop Correlations for Two-phase Flow in Pipes”. Nuclear Engineering and Design 253: 86–97. doi:10.1016/j.nucengdes.2012.08.007.
  • Xu, Y., and X. Fang. 2012. “A New Correlation of Two-phase Frictional Pressure Drop for Evaporating Flow in Pipes.” International Journal of Refrigeration 35 (7): 2039–2050. doi:10.1016/j.ijrefrig.2012.06.011.
  • Yadav, V., Kumar, Y., Agrawal, H., and A. Yadav. 2017. “Thermal Performance Evaluation of Solar Cooker with Latent and Sensible Heat Storage Unit for Evening Cooking.” Australian Journal of Mechanical Engineering 15 (2): 93–102. DOI:10.1080/14484846.2015.1093260.
  • Zhu, J., Wang, K., Wu, H., Wang, D.,Du, J., and A.G. Olabi. 2015. “Experimental Investigation on the Energy and Exergy Performance of a Coiled Tube Solar Receiver”. Applied Energy 156: 519–527. doi:10.1016/j.apenergy.2015.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.