346
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Parametric study of natural convection heat transfer from an inclined rectangular cylinder embedded in a square enclosure

, , , , &
Pages 668-681 | Received 10 Oct 2020, Accepted 02 Apr 2021, Published online: 15 Apr 2021

References

  • Abdulkadhim, A., A. M. Abed, and K. Al-Farhany. 2018. “Computational Investigation of Conjugate Heat Transfer in Cavity Filled with Saturated Porous Media.” Frontiers in Heat and Mass Transfer 11
  • Abdulkadhim, A., K. Al-Farhany, and A. M. Abed. 2018. “Effect of Adiabatic Circular Cylinder on the Natural Convection Heat Transfer Characterizes in a Porous Enclosure.” Chemical Engineering Transactions 71: 1309–1314.
  • Adegun, I. K., S. E. Ibitoye, and A. Bala. 2020. “Effect of Selected Geometric Parameters on Natural Convection in Concentric Square Annulus.” Australian Journal of Mechanical Engineering 1–12. doi:10.1080/14484846.2020.1784559.
  • Ahmed, S. E., and H. M. Elshehabey. 2018. “Buoyancy-driven Flow of Nanofluids in an Inclined Enclosure Containing an Adiabatic Obstacle with Heat Generation/absorption: Effects of Periodic Thermal Conditions.” International Journal of Heat and Mass Transfer 124: 58–73. doi:10.1016/j.ijheatmasstransfer.2018.03.044.
  • Al-Balushi, L. M., M. J. Uddin, and M. M. Rahman. 2019. “Natural Convective Heat Transfer in a Square Enclosure Utilizing Magnetic Nanoparticles.” Propulsion and Power Research 8 (3): 194–209. doi:10.1016/j.jppr.2018.07.009.
  • Altaee, A. H., F. H. Ali, and Q. A. Mahdi. 2017. “Natural Convection inside Square Enclosure Containing Equilateral Triangle with Different Orientations.” Journal of University of Babylon 25 (4): 1194–1205.
  • Aneja, M., A. Chandra, and S. Sharma. 2020. “Natural Convection in a Partially Heated Porous Cavity to Casson Fluid.” International Communications in Heat and Mass Transfer 114: 104555. doi:10.1016/j.icheatmasstransfer.2020.104555.
  • Bég, O. A., N. Ali, A. Zaman, E. T. Bég, and A. Sohail. 2016. “Computational Modeling of Heat Transfer in an Annular Porous Medium Solar Energy Absorber with the P1-radiative Differential Approximation.” Journal of the Taiwan Institute of Chemical Engineers 66: 258–268. doi:10.1016/j.jtice.2016.06.034.
  • Cho, H. W., Y. G. Park, and M. Y. Ha. 2018. “The Natural Convection in a Square Enclosure with Two Hot Inner Cylinders, Part I: The Effect of One Elliptical Cylinder with Various Aspect Ratios in a Vertical Array.” International Journal of Heat and Mass Transfer 125: 815–827. doi:10.1016/j.ijheatmasstransfer.2018.04.141.
  • Chowdhury, K., A. Alim, and M. Hossen (2020) “Natural Convection in a Partially Heated and Cooled Square Enclosure Containing a Diamond Shaped Heated Block.”
  • De Vahl Davis, G., and I. P. Jones. 1983. “Natural Convection of Air in A Square Cavity: A Bench Mark Numerical Solution.” International Journal for Numerical Methods in Fluids 3 (3): 227–248. doi:10.1002/fld.1650030304.
  • El Moutaouakil, L., Z. Zrikem, and A. Abdelbaki. 2017. “Lattice Boltzmann Simulation of Natural Convection in an Annulus between a Hexagonal Cylinder and a Square Enclosure.” Mathematical Problems in Engineering 2017: 1–11. doi:10.1155/2017/3834170.
  • Elsherbiny, S. M., M. A. Teamah, and A. R. Moussa. 2017. “Natural Convection Heat Transfer from an Isothermal Horizontal Square Cylinder.” Alexandria Engineering Journal 56 (1): 181–187. doi:10.1016/j.aej.2016.09.020.
  • Esfe, M. H., A. A. Nadooshan, A. Arshi, and A. Alirezaie. 2018. “Convective Heat Transfer and Pressure Drop of Aqua Based TiO 2 Nanofluids at Different Diameters of Nanoparticles: Data Analysis and Modeling with Artificial Neural Network.” Physica. E, Low-dimensional Systems & Nanostructures 97: 155–161. doi:10.1016/j.physe.2017.10.002.
  • Gangawane, K. M., and B. Manikandan. 2017. “Laminar Natural Convection Characteristics in an Enclosure with Heated Hexagonal Block for non-Newtonian Power Law Fluids.” Chinese Journal of Chemical Engineering 25 (5): 555–571. doi:10.1016/j.cjche.2016.08.028.
  • Gao, F., D. B. Pitz, and J. W. Chew. 2020. “Numerical Investigation of Buoyancy-induced Flow in a Sealed Rapidly Rotating Disc Cavity.” International Journal of Heat and Mass Transfer 147: 118860. doi:10.1016/j.ijheatmasstransfer.2019.118860.
  • Habib, E. E. 2020. “Numerical Study of Natural Convection from a Horizontal Cylinder with Different Cross Sections.” Journal of Mechanical Engineering Research and Development 48 (3): 246–259.
  • Habibis, S., I. A. Ammar, and H. Ishark. 2015. “Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon.” Advances in Mechanical Engineering 7 (12): 1–10.
  • Hassanzadeh, R., R. Rahimi, A. Khosravipour, S. Mostafavi, and H. Pekel. 2020. “Analysis of Natural Convection in a Square Cavity in the Presence of a Rotating Cylinder with a Specific Number of Roughness Components.” International Communications in Heat and Mass Transfer 116: 104708. doi:10.1016/j.icheatmasstransfer.2020.104708.
  • Husain, S., and M. A. Siddiqui. 2018. “Experimental and Numerical Analysis of Transient Natural Convection of Water in a High Aspect Ratio Narrow Vertical Annulus.” Progress in Nuclear Energy 106: 1–10. doi:10.1016/j.pnucene.2018.02.013.
  • Izadi, M., R. Mohebbi, D. Karimi, and M. A. Sheremet. 2018. “Numerical Simulation of Natural Convection Heat Transfer inside a ┴ Shaped Cavity Filled by a MWCNT-Fe3O4/water Hybrid Nanofluids Using LBM.” Chemical Engineering and Processing-Process Intensification 125: 56–66. doi:10.1016/j.cep.2018.01.004.
  • Kalyana Raman, S., K. Arul Prakash, and S. Vengadesan. 2012. “Natural Convection from a Heated Elliptic Cylinder with a Different Axis Ratio in a Square Enclosure. Numerical Heat Transfer.” Part A: Applications 62 (8): 639–658.
  • Karki, P., A. K. Yadav, and D. Arumuga Perumal. 2019. “Study of Adiabatic Obstacles on Natural Convection in a Square Cavity Using Lattice Boltzmann Method.” Journal of Thermal Science and Engineering Applications 11 (3): 3. doi:10.1115/1.4041875.
  • Khatamifar, M., W. Lin, S. W. Armfield, D. Holmes, and M. P. Kirkpatrick. 2017. “Conjugate Natural Convection Heat Transfer in a Partitioned Differentially-heated Square Cavity.” International Communications in Heat and Mass Transfer 81: 92–103. doi:10.1016/j.icheatmasstransfer.2016.12.003.
  • Kolsi, L., E. Lajnef, W. Aich, A. Alghamdi, M. A. Aichouni, M. N. Borjini, and H. B. Aissia. 2017. “Numerical Investigation of Combined Buoyancy-thermocapillary Convection and Entropy Generation in 3D Cavity Filled with Al 2 O 3 Nanofluid.” Alexandria Engineering Journal 56 (1): 71–79. doi:10.1016/j.aej.2016.09.005.
  • Kumar, G. V., M. Kampili, S. Kelm, K. A. Prakash, and H.-J. Allelein. 2020. “CFD Modelling of Buoyancy Driven Flows in Enclosures with Relevance to Nuclear Reactor Safety.” Nuclear Engineering and Design 365: 110682. doi:10.1016/j.nucengdes.2020.110682.
  • Leporini, M., F. Corvaro, B. Marchetti, F. Polonara, and M. Benucci. 2018. “Experimental and Numerical Investigation of Natural Convection in Tilted Square Cavity Filled with Air.” Experimental Thermal and Fluid Science 99: 572–583. doi:10.1016/j.expthermflusci.2018.08.023.
  • Lu, J., B. Shi, Z. Guo, and Z. Chai. 2009. “Numerical Study on Natural Convection in a Square Enclosure Containing a Rectangular Heated Cylinder.” Frontiers of Energy and Power Engineering in China 3 (4): 373. doi:10.1007/s11708-009-0078-x.
  • Mousa, M. M. 2016. “Modeling of Laminar Buoyancy Convection in a Square Cavity Containing an Obstacle.” Bulletin of the Malaysian Mathematical Sciences Society 39 (2): 483–498. doi:10.1007/s40840-015-0188-z.
  • Munshi, M. J. H., A. H. Bhuiyan, and M. A. Alim. 2015. “A Numerical Study of Natural Convection in A Square Enclosure with Non-uniformly Heated Bottom Wall and Square Shape Heated Block.” American Journal of Engineering Research 4 (5): 124–137.
  • Nagarajan, N., and U. Periyasamy. 2015. “Natural Convection in a Tilted Square Enclosure Having Heat Generating Solid Body and with Various Thermal Boundaries.” Procedia Engineering 127: 1235–1242. doi:10.1016/j.proeng.2015.11.474.
  • Raisi, A., and I. Arvin. 2018. “A Numerical Study of the Effect of Fluid-structure Interaction on Transient Natural Convection in an Air-filled Square Cavity.” International Journal of Thermal Sciences 128: 1–14. doi:10.1016/j.ijthermalsci.2018.02.012.
  • Rui, Z., J. Li, J. Ma, H. Cai, B. Nie, and H. Peng. 2020. “Comparative Study on Natural Convection Melting in Square Cavity Using Lattice Boltzmann Method.” Results in Physics 18: 103274. doi:10.1016/j.rinp.2020.103274.
  • Saha, S. K. 2020. “Magnetohydrodynamic Buoyancy Driven Al2O3-water Nanofluid Flow in a Differentially Heated Trapezoidal Enclosure with a Cylindrical Barrier.” International Communications in Heat and Mass Transfer 114: 104593. doi:10.1016/j.icheatmasstransfer.2020.104593.
  • Şahin, B. 2020. “Effects of the Center of Linear Heating Position on Natural Convection and Entropy Generation in a Linearly Heated Square Cavity.” International Communications in Heat and Mass Transfer 117: 104675. doi:10.1016/j.icheatmasstransfer.2020.104675.
  • Sannad, M., B. Abourida, L. Belarche, H. Doghmi, and M. Ouzaouit. 2019. “Effect of the Heating Block Position on Natural Convection in a Three-Dimensional Cavity Filled with Nanofluids.” Journal of Applied Fluid Mechanics 12 (1): 281–291. doi:10.29252/jafm.75.253.29026.
  • Sebilleau, F., R. Issa, S. Lardeau, and S. P. Walker. 2018. “Direct Numerical Simulation of an Air-filled Differentially Heated Square Cavity with Rayleigh Numbers up to 10 11.” International Journal of Heat and Mass Transfer 123: 297–319. doi:10.1016/j.ijheatmasstransfer.2018.02.042.
  • Singh, R. J., and T. B. Gohil. 2019. “The Numerical Analysis on the Variation of Electric Potential, Electric Current and Lorentz Force with Its Influence on Buoyancy-driven Conjugate Heat Transfer and Fluid Flow Using OpenFOAM.” Fusion Engineering and Design 148: 111300. doi:10.1016/j.fusengdes.2019.111300.
  • Souayeh, B., H. Alfannakh, and M. Al Mutairi. 2019. “Natural Convection in a Square Enclosure with a Conducting Rectangular Shape Positioned at Different Horizontal Locations.” High Temperature 57 (4): 539–546. doi:10.1134/S0018151X19040205.
  • Tiwari, R. K., and M. K. Das. 2007. “Heat Transfer Augmentation in a Two-sided Lid-driven Differentially Heated Square Cavity Utilizing Nanofluids.” International Journal of Heat and Mass Transfer 50 (9–10): 2002–2018. doi:10.1016/j.ijheatmasstransfer.2006.09.034.
  • Wan, D. C., B. S. V. Patnaik, and G. W. Wei. 2001. “A New Benchmark Quality Solution for the Buoyancy-driven Cavity by Discrete Singular Convolution.” Numerical Heat Transfer, Part B: Fundamentals 40 (3): 199–228. doi:10.1080/104077901752379620.
  • Wang, L., X. Yang, C. Huang, Z. Chai, and B. Shi. 2019. “Hybrid Lattice Boltzmann-TVD Simulation of Natural Convection of Nanofluids in a Partially Heated Square Cavity Using Buongiorno’s Model.” Applied Thermal Engineering 146: 318–327. doi:10.1016/j.applthermaleng.2018.09.109.
  • Wang, Y., and G. Qin. 2018. “An Improved Time-splitting Method for Simulating Natural Convection Heat Transfer in a Square Cavity by Legendre Spectral Element Approximation.” Computers & Fluids 174: 122–134. doi:10.1016/j.compfluid.2018.07.013.
  • Yoon, H. S., M. Y. Ha, B. S. Kim, and D. H. Yu. 2009. “Effect of the Position of a Circular Cylinder in a Square Enclosure on Natural Convection at Rayleigh Number of 107.” Physics of Fluids 21 (4): 047101. doi:10.1063/1.3112735.
  • Zhang, P., X. Zhang, J. Deng, and L. Song. 2016. “A Numerical Study of Natural Convection in an Inclined Square Enclosure with an Elliptic Cylinder Using Variational Multiscale Element Free Galerkin Method.” International Journal of Heat and Mass Transfer 99: 721–737. doi:10.1016/j.ijheatmasstransfer.2016.04.011.
  • Zhang, X., and M. Yang. 2009. “Natural Convection Heat Transfer of a Rectangular Block within a Vertical Enclosure.” Heat Transfer Engineering 30 (6): 466–476. doi:10.1080/01457630802528984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.