139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A review of computational studies on the effect of physical variables in direct injection diesel engines

ORCID Icon
Pages 733-755 | Received 29 Nov 2020, Accepted 02 Apr 2021, Published online: 20 Apr 2021

References

  • Aceves, S., D. L. Flowers, F. Espinosa-Loza, and A. Babajimopoulos, 2005, “Analysis of Premixed Charge Compression Ignition Combustion with a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model”, SAE Technical Paper 2005-01-0115. doi: 10.4271/2005-01-0115
  • Aita, S., A. Tabbal, G. Munck, N. Montmayeur, Y. Takenaka, and Y. Aoyagi, 1991, “ Numerical Simulation of Swirling Portvalve-Cylinder Flow in Diesel Engine,” SAE Technical Paper 910263. doi: 10.4271/910263
  • Akbarian, E., B. Najafi, M. Jafari, S. F. Ardabili, S. Shamshirband, and K.-W. Chau. 2018. “Experimental and Computational Fluid Dynamics-Based Numerical Simulation of Using Natural Gas in a Dual-fueled Diesel Engine.” Engineering Applications of Computational Fluid Mechanics 12 (1): 517–534. doi:10.1080/19942060.2018.1472670.
  • Akihama, K., Y. Takatori, K. Inagaki, S. A. Sasaki, and A. M. Dean, 2001, “Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature”, SAE Technical paper 2001-01-0655. doi: 10.4271/2001-01-0655
  • Aleiferis, P. G., and Z. R. Van Romunde. 2012. “An Analysis of Spray Development with Iso-Octane, N-Pentane, Gasoline, Ethanol and N-Butanol from a Multi-Hole Injector Under Hot Fuel Conditions.” Fuel. doi:10.1016/j.fuel.2012.07.044.
  • Amano, T., S. Morimoto, and Y. Kawabata, 2001, “Modeling of the Effect of Air/Fuel Ratio and Temperature Distribution on HCCI Engines”, SAE Technical Paper 2001-01-1024.doi: 10.4271/2001-01-1024
  • Angelberger, C., D. Veynante, F. Egolfopoulos, and T. Poinsot, 1998, “A Flame Surface Density Model for Large Eddy Simulations of Turbulent Premixed Flames.” Proceedings of the Summer Program, Center for Turbulence Research, Stanford, California, USA. Vol. 126, pp. 66–82.
  • Arcoumanis, C., P. Begleris, A. D. Gosman, and J. H. Wkhitelaw, 1986, “Measurements and Calculations of the Flow in a Research Diesel Engine”, SAE Technical Paper 861563. doi: 10.4271/861563
  • Arcoumanis, C., M. Gavaises, and B. French, 1997, “Effect of Fuel Injection on the Structure of Diesel Sprays”, SAE Technical Paper 970799. doi: 10.4271/970799
  • Arcoumannis, C., A. F. Bicen, and J. H. Whitelaw. 1993. “Squish and Swirl–Squish Interaction in Motored Model Engines.” ASME J Fluid Mech 105 (12): 212–245. doi:10.1115/1.3240925.
  • Béard, P., O. Colin, and M. Miche, 2003, “Improved Modeling of DI Diesel Engines Using Sub-Grid Descriptions of Spray and Combustion”, SAE Technical Paper 2003-01-0008. doi: 10.4271/2003-01-0008
  • Bianchi, G. M., and S. Fontanesi, 2003, “On the Applications of Low-Reynolds Cubic K–Turbulence Models in 3D Simulations of Ice Intake Flows”, SAE Technical Paper 2003-01-0003. doi: 10.4271/2003-01-0003
  • Borman, G. L., and K. W. Gagland. 1998. Combustion Engineering. WCB/McGraw-Hill New York.
  • Brandl, F., W. Reverencic, Cartellieri, W, and J. C. Dent, 1979, “Turbulent Air Flow in the Combustion Bowl of a DI Diesel Engine and Its Effect on Engine Performance”, SAE Technical Paper 790040. doi: 10.4271/790040
  • Celik, I., I. Yavuz, and A. Smirnov. 2001. “Large Eddy Simulations of In-Cylinder Turbulence for Internal Combustion Engines: A Review.” International Journal of Engine Research 2 (2): 119–148. doi:10.1243/1468087011545389.
  • Chen, A., A. Veshagh, and S. Wallace, 1998, “Intake Flow Predictions of a Transparent DI Diesel Engine”, SAE Technical paper 981020. doi: 10.4271/981020
  • Chen, W., J. Pan, B. Fan, Y. Liu, and O. Peter. 2017. “Effect of Injection Strategy on Fuel-Air Mixing and Combustion Process in a Direct Injection Diesel Rotary Engine (DI-DRE).” Energy Conversion and Management 154: 68–80. doi:10.1016/j.enconman.2017.10.048.
  • Chen, Y., X. Li, S. Shi, Q. Zhao, D. Liu, J. Chang, and F. Liu. 2021. “Effects of Intake Swirl on the Fuel/Air Mixing and Combustion Performance in a Lateral Swirl Combustion System for Direct Injection Diesel Engines.” Fuel 286 (1): 119376. doi:10.1016/j.fuel.2020.119376.
  • Chhetri, A. B., and K. C. Watts. 2012. “Surface Tensions of Petro-diesel, Canola, Jatropha and Soapnut Biodiesel Fuels at Elevated Temperatures and Pressures.” Fuel. doi:10.1016/j.fuel.2012.05.006.
  • Colin, O., and A. Benkenida. 2004. “The 3-Zone Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/diffusion Combustion.” Oil & Gas Science and Technology– Rev 59 (6): 593–609. IFP. doi:10.2516/ogst:2004043.
  • Dec, J. E. 2009. “Advanced Compression-ignition Engines– Understanding the In-cylinder Processes.” Proceedings of the Combustion Institute 32 (2): 2727–2742. doi:10.1016/j.proci.2008.08.008.
  • Dillies, B., A. Ducamin, L. Lebrere, and F. Neveu, 1997, “Direct Injection Diesel Engine Simulation: A Combined Numerical and Experimental Approach from Aerodynamics to Combustion”, SAE Technical paper 970880. doi: 10.4271/970880
  • Fang, T., C. F. Lee, R. E. Coverdill, and R. A. White. 2007. “Smokeless Combustion within a Small-bore HSDI Diesel Engine Using a Narrow Angle Injector.” SAE Technical Paper. 2007-01-0203. doi:10.4271/2007-01-0203.
  • Fridriksson, H., B. Sundén, M. Tunér, and Ö. Andersson. 2017. “Heat Transfer in Diesel and Partially Premixed Combustion Engines; A Computational Fluid Dynamics Study.” Heat Transfer Engineering 38 (17): 1481–1495. doi:10.1080/01457632.2016.1255086.
  • Ganesh, D., and G. Nagarajan. 2010. “Homogeneous Charge Compression Ignition (HCCI) Combustion of Diesel Fuel with External Mixture Formation.” Energy 35 (1): 148–157. doi:10.1016/j.energy.2009.09.005.
  • Gao, W., J. Liu, P. Sun, T. Wang, L. Chen, B. Wang, T. Kang, S. Liu, and K. Shi. 2020. “Numerical Simulation on NO and Soot Formation Process of a Diesel Engine with Polyoxymethylene Dimethyl Ethers-diesel Blend Fuel.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1726530.
  • Gatellier, B., A. Ranini, and M. Castagné. 2006. “New Developments of the NADI (TM) Concept to Improve Operating Range, Exhaust Emissions and Noise.” Oil & Gas Science and Technology 61 (1): 7–23. doi:10.2516/ogst:2006001x.
  • Genzale, C. L., S. C. Kong, and R. D. Reitz. 2008. “Modeling the Effects of Variable Intake Valve Timing on Diesel HCCI Combustion at Varying Load, Speed, and Boost Pressures.” Journal of Engineering for Gas Turbines and Power 130 (5): 0528061–0528068. doi:10.1115/1.2938270.
  • Gosman, A. D., Y. Y. Tsui, and A. P. Watkins, 1984, “Calculation of Three Dimensional Air Motion in Model Engines”, SAE Technical paper 840229. doi: 10.4271/840229
  • Han, K., B. Jang, G. Lakew, and K. Y. Huh. 2018. “Combustion Simulation of a Diesel Engine with Split Injections by Lagrangian Conditional Moment Closure Model.” Combustion Science and Technology 190 (1): 1–19. doi:10.1080/00102202.2017.1354854.
  • Hawley, J. G., F. J. Wallace, A. Cox, R. W. Horrocks, and G. L. Bird, 1999, “Reduction of Steady-State NOx Levels from an Automotive Diesel Engine Using Optimized VGT/EGR Schedules”, SAE Technical paper 1999-01-0835. doi: 10.4271/1999-01-0835
  • Helmantel, A., and I. Denbratt, 2004, “HCCI Operation of a Passenger Car Common Rail DI Diesel Engine with Early Injection of Conventional Diesel Fuel”, SAE Technical Paper 2004-01-0935. doi: 10.4271/2004-01-0935
  • Helmantel, A., J. Gustavasson, and I. Denbratt, 2005, “Operation of a DI Diesel Engine with Variable Effective Compression Ratio in HCCI an Conventional Diesel Mode”, SAE Technical Paper 2005-01-0177. doi: 10.4271/2005-01-0177
  • Hernandez, J. J., J. Sanz-Argent, J. Benajes, and S. Molina. 2008. “Selection of a Diesel Fuel Surrogate for the Prediction of Auto-ignition Under HCCI Engine Conditions.” Fuel 87 (6): 655–665. doi:10.1016/j.fuel.2007.05.019.
  • Heywood, J. B. 2018. C Internal Combustion Engine Fundamentals. Second edition/McGraw-Hill New York.
  • Hossainpour, S., and A. R. Binesh. 2009. “Investigation of Fuel Spray Atomization in a DI Heavy-Duty Diesel Engine and Comparison of Various Spray Breakup Models.” Fuel 88 (5): 799–805. doi:10.1016/j.fuel.2008.10.036.
  • Hultqvist, A., U. Engdar, B. Johansson, and J. Klingmann, 2001, “Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine”, SAE Technical paper 2001-01-1032. doi: 10.4271/2001-01-1032
  • Hyvonen, J., G. Haraldsson, and B. Johansson, 2003, “Super Charging HCCI to Extend the Operating Range in a Multi Cylinder VCR-HCCI Engine”, SAE Technical Paper 2003-01-3214. doi: 10.4271/2003-01-3214
  • Ishida, A., A. Nishimura, M. Uranishi, R. Kihara, A. Nakamura, and P. Newman, 2000, “Development of ECOS-DDF Natural Gas Engine for Medium Duty Trucks––exhaust Gas Emission Reduction against Base Diesel Engine”, JSAE paper 20005001.
  • Jaeman, L., and M. Kyoungdoug, 2005, “The Effects of Spray Angle and Piston Bowl Shape on Diesel Engine Soot Emissions Using 3-D CFD Simulation”, SAE Technical Paper 2005-01-2117. doi: 10.4271/2005-01-2117
  • Jayashankara, B., and V. Ganesan. 2010. “Effect of Fuel Injection Timing and Intake Pressure on the Performance of A DI Diesel Engine– A Parametric Study Using CFD.” Energy Conversion and Management 51 (10): 1835–1848. doi:10.1016/j.enconman.2009.11.006.
  • Junjun, M., X. Lü, J. Libin, and Z. Huang. 2008. “An Experimental Study of HCCI-DI Combustion and Emissions in a Diesel Engine with Dual Fuel.” International Journal of Thermal Sciences 47 (9): 1235–1242. doi:10.1016/j.ijthermalsci.2007.10.007.
  • Kalghatgi, G. T., 2007, “Partially Pre-mixed Auto-ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel”. SAE Technical Paper 2007-01-0006. doi: 10.4271/2007-01-0006
  • Karlsson, A., I. Magnusson, M. Balthasar, and F. Mauss, 1988, “Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model”, SAE Technical Paper 981022. doi: 10.4271/981022
  • Kengo, K., and I. Norimasa, 2004, “Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement” SAE Technical paper 2004-01-1902. doi: 10.4271/2004-01-1902
  • Kim, D. S., M. Y. Kim, and C. S. Lee. 2007. “Combustion and Emission Characteristics of a Partial Homogeneous Charge Compression Ignition Engine When Using Two-stage Injection.” Combustion Science and Technology 179 (3): 531–551. doi:10.1080/00102200600671914.
  • Kondoh, T., A. Fukumoto, K. Ohsawa, and Y. Ohkubo, 1985, “An Assessment of a Multidimensional Numerical Method to Predict the Flow in Internal Combustion Engines”, SAE Technical Paper 850500. doi: 10.4271/850500
  • Kono, S., T. Terashita, and H. Kudo, 1991, “Study of the Swirl Effects on Spray Formations in DI Engines by 3D Numerical Calculations”, SAE Technical Paper 910264. doi: 10.4271/910264
  • Kook, S., and C. Bas, 2004, “Combustion Control Using Two-stage Diesel Fuel Injection in a Single-cylinder PCCI Engine”, SAE Technical Paper 2004-01-0938. doi: 10.4271/2004-01-0938
  • Kreso, A. M., J. H. Johnson, L. D. Gratz, S. T. Bagley, and D. G. Leddy, 1988, “A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions”, SAE Technical paper 981422. doi: 10.4271/981422
  • Kumano, K., and N. Iida, 2004, “Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement”, SAE Technical Paper 2004-01-1902. doi: 10.4271/2004-01-1902
  • Lan, Q., Y. Bai, L. Fan, Y. Gu, L. Wen, and L. Yang. 2020. “Investigation on Fuel Injection Quantity of Low-speed Diesel Engine Fuel System Based on Response Surface Prediction Model.” Energy 211: 118946. doi:10.1016/j.energy.2020.118946.
  • Lechner, G. A., T. Jacobs, C. Chryssakis, D. N. Assanis, and R. M. Siewert, 2005, “Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine”, SAE Technical paper 2005-01-0167. doi: 10.4271/2005-01-0167
  • Machacon, H., S. Shiga, T. Karasawa, and H. Nakamura, 2000, “Simultaneous Reduction of Soot and NOx by Intake Gas Variation”, 6th International Symposium on Marine Engineering, Tokyo.
  • Magnus, C., and J. Bengt, 2002, “The Effect of In-Cylinder Flow and Turbulence on HCCI Operation”, SAE Technical paper 2002-01-2864. doi: 10.4271/2002-01-2864
  • Manimaran, R., and R. Thundil Karuppa Raj. 2013a. “CFD Analysis of Combustion and Pollutant Formation Phenomena in a Direct Injection Diesel Engine at Different EGR Conditions.” Procedia Engineering 64: 497–506. doi:10.1016/j.proeng.2013.09.124.
  • Manimaran, R., and R. Thundil Karuppa Raj. 2013b. “Numerical Investigations of Spray Droplet Parameters in a Direct Injection Diesel Engine Using 3-Z Extended Coherent Flame Model.” Advanced Materials Research 768: 226–230. d oi: 1 0.4028/w ww.s cientific.n et/AMR.768.226.
  • Manimaran, R., and R. Thundil Karuppa Raj. 2013c. “Numerical Investigations on Combustion and Emission Characteristics in a Direct Injection Diesel Engine at Elevated Fuel Temperatures.” Frontiers in Heat and Mass Transfer (FHMT) 4: 013008. doi:10.5098/hmt.v4.1.3008.
  • Manimaran, R., and R. Thundil Karuppa Raj. 2014a. “Computational Studies of Swirl Ratio and Injection Timing on Atomization in a Direct Injection Diesel Engine.” Frontiers in Heat and Mass Transfer (FHMT) 5 (2). doi:10.5098/hmt.5.2.
  • Manimaran, R., and R. Thundil Karuppa Raj. 2014b. “Comparative Evaluation of Re-entrant and Flat Toroidal Combustion Chambers in a Direct Injection Diesel Engine Using Computational Fluid Dynamics.” Computational Thermal Sciences: An International Journal 6 (2): 171–190. doi:10.1615/ComputThermalScien.2014010594.
  • Manimaran, R., and R. Thundil Karuppa Raj. 2018. “CFD Simulation of Flow Field and Heat Transfer in a Single-Cylinder HCCI Engine at Different Boundary Conditions.” Computational Thermal Sciences: An International Journal 10 (4): 337–354. doi:10.1615/ComputThermalScien.2018022786.
  • Manimaran, R., R. Thundil Karuppa Raj, and K. Senthil Kumar. 2012. “Numerical Analysis of Direct Injection Diesel Engine Combustion Using Extended Coherent Flame 3-Zone Model.” Research Journal of Recent Sciences 1 (8): 1–9.
  • Manimaran, R., R. Thundil Karuppa Raj, and K. Senthil Kumar. 2013. “Premixed Charge Compression Ignition in Direct Injection Diesel Engine Using Computational Fluid Dynamics.” WSEAS Transactions on Heat and Mass Transfer 8 (1): 16–24.
  • Marriot, C. D., and R. D. Reitz, 2002, “Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control”, SAE Technical Paper 2002-01-0418. doi: 10.4271/2002-01-0418
  • Maurya, R. K., and A. K. Agarwal. 2011. “Experimental Study of Combustion and Emission Characteristics of Ethanol Fuelled Port Injected Homogeneous Charge Compression Ignition (HCCI) Combustion Engine.” Applied Energy 88 (4): 1169–1180. doi:10.1016/j.apenergy.2010.09.015.
  • Muether, M., 2008, “Advanced Combustion for Low Emissions and High Efficiency. Part 1: Impact of Engine Hardware on HCCI Combustion” SAE Technical paper 2008-01-0024. doi: 10.4271/2008-01-0024
  • Murakami, A., M. Arai, and H. Hiroyasu, 1988, “Swirl Measurements and Modelling in Direct Injection Diesel Engines” SAE Technical Paper 880385.doi: 10.4271/880385
  • Murata, Y., J. Kusaka, Y. Daisho, D. Kawano, H. Suzuki, H. Ishii, and Y. Goto, 2008, “Miller-PCCI Combustion in an HSDI Diesel Engine with VVT”, SAE Technical paper 2008-01-0644. doi: 10.4271/2008-01-0644
  • Murayama, T., M. Zheng, T. Chikahisa, Y. Oh, Y. Fujiwara, and F. Tosaka, 1995, “Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate”, SAE Technical paper 952518. doi: 10.4271/952518
  • Myong, K.-J., H. Suzuki, J. Senda, and H. Fujimoto. 2006. “Evaporation Characteristics of Multi-component Fuel.” Fuel 85 (17–18): 2632–2639. doi:10.1016/j.fuel.2006.04.020.
  • Nevin, R. M., Y. Sun, M. A. Gonzalez, and R. D. Reitz, 2007, “PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine”, SAE Technical paper 2007-01-0903. doi: 10.4271/2007-01-0903
  • Nordgren, H., A. Hultqvist, and B. Johansson, 2004, “Start of Injection Strategies for HCCI-combustion”, SAE Technical Paper 2004-01-2990. doi: 10.4271/2004-01-2990
  • Payri, F., J. Benajes, X. Margeo, and A. Gil. 2004. “CFD Modeling of the In-cylinder Flow in Direct-injection Diesel Engine.” Computers & Fluids 33 (8): 995–1021. doi:10.1016/j.compfluid.2003.09.003.
  • Pires Da Cruz, A. 2004. “Three-dimensional Modeling of Self-Ignition in HCCI and Conventional Diesel Engines.” Combustion Science and Technology 176 (5–6): 867–887. doi:10.1080/00102200490428503.
  • Prasad, B. V. V. S. U., C. S. Sharma, T. N. C. Anand, and R. V. Ravikrishna. 2011. “High Swirl-inducing Piston Bowls in Small Diesel Engines for Emission Reduction.” Applied Energy 88 (7): 2355–2367. doi:10.1016/j.apenergy.2010.12.068.
  • Rakopoulos, C. D., G. M. Kosmadakis, and E. G. Pariotis. 2010. “Investigation of Piston Bowl Geometry and Speed Effects in a Motored HSDI Diesel Engine Using a CFD against a Quasi-Dimensional Model.” Energy Conversion and Management 51 (3): 470–484. doi:10.1016/j.enconman.2009.10.010.
  • Reitz, R. D., and R. Diwakar, 1986, “Effect of Drop Breakup on Fuel Sprays”, SAE Technical Paper 860469. doi: 10.4271/860469
  • Renganathan, M., and R. Rajagopal Thundil Karuppa, 2014, “Computational Study of HCCI-DI Combustion at Preheated and Supercharged Inlet Air Conditions,” SAE Technical Paper 2014-01-1108. doi: 10.4271/2014-01-1108
  • Richter, M., J. Engström, A. Franke, M. Aldén, A. Hultqvist, and B. Johansson, 2000, “The Influence of Charge Inhomogeneity on the HCCI Combustion Process”, SAE Technical Paper 2000-01-2868. doi: 10.4271/2000-01-2868
  • Saito, T., Y. Daisho, Y. N. Uchida, and N. Ikeya, 1986, “Effects of Combustion Chamber Geometry on Diesel Combustion”, SAE Technical Paper 861186. doi: 10.4271/861186
  • Schapertons, H., and F. Thiele, 1986, “Three Dimensional Computations for Flowfields in DI Piston Bowls”, SAE Technical Paper 860463.doi: 10.4271/860463
  • Senthil Kumar, M., A. Kerihuel, J. Bellettre, and M. Tazerout. 2005. “Experimental Investigations on the Use of Preheated Animal Fat as Fuel in a Compression Ignition Engine.” Renewable Energy 30 (9): 1443–1456. doi:10.1016/j.renene.2004.11.003.
  • Shuang, H., B.-G. Du, L.-Y. Feng, F. Yao, J.-C. Cui, and W.-Q. Long. 2015. “A Numerical Study on Combustion and Emission Characteristics of A Medium-Speed Diesel Engine Using In-Cylinder Cleaning Technologies.” Energies 8 (5): 4118–4137. doi:10.3390/en8054118.
  • Siewert, R. M., 2007, “Spray Angle and Rail Pressure Study for Low NOx Diesel Combustion”, SAE Technical paper 2007-01-0122. doi: 10.4271/2007-01-0122
  • Singh, A. P., and A. K. Agarwal. 2012. “Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique.” Applied Energy 99: 116–125. doi:10.1016/j.apenergy.2012.03.060.
  • Sjöberg, M., L. O. Edling, T. Eliassen, L. Magnusson, and H. E. Ångström, 2002, “GDI HCCI: Effects of Injection Timing and Air Swirl on Fuel Stratification, Combustion and Emissions Formation”, SAE Technical Paper 2002-01-0106. doi: 10.4271/2002-01-0106
  • STAR methodology for internal combustion engine applications and es-ICE user guide (2010), “Version 4.16.” CD-adapco.
  • Stephenson, P. W., P. J. Claybaker, and C. T. Rutland, 1996, “Modeling the Effects of Intake Generated Turbulence and Resolved Flow Structures on Combustion in Direct Injection Diesel Engine”, SAE Technical Paper 960634. doi: 10.4271/960634
  • Su, W., . H., H. Wang, and B. Liu, 2005, “Injection Mode Modulation for HCCI Diesel Combustion”, SAE Technical Paper 2005-01-0117. doi: 10.4271/2005-01-0117
  • Tay, K. L., W. Yang, F. Zhao, Y. Wenbin, and B. Mohan. 2017a. “A Numerical Study on the Effects of Boot Injection Rate-shapes on the Combustion and Emissions of A Kerosene-diesel Fueled Direct Injection Compression Ignition Engine.” Fuel 203: 430–444. doi:10.1016/j.fuel.2017.04.142.
  • Tay, K. L., W. Yang, F. Zhao, Y. Wenbin, and B. Mohan. 2017b. “Numerical Investigation on the Combined Effects of Varying Piston Bowl Geometries and Ramp Injection Rate-shapes on the Combustion Characteristics of a Kerosene-diesel Fueled Direct Injection Compression Ignition Engine.” Energy Conversion and Management 136: 1–10. doi:10.1016/j.enconman.2016.12.079.
  • Temizer, İ., and Ö. Cihan. 2021. “Analysis of Different Combustion Chamber Geometries Using Hydrogen/Diesel Fuel in a Diesel Engine.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (1): 17–34. doi: 10.1080/15567036.2020.1811808.
  • Theodorakakos, A., and G. Bergeles, 1993,“Predictions of the In-cylinder Fluid Motion of a Motored Internal Combustion Engine”, Entropie no. 174/175.
  • Thundil Karuppa Raj, R., and R. Manimaran. 2012. “Effect of Swirl in a Constant Speed DI Diesel Engine Using Computational Fluid Dynamics.” CFD Letters 4 (4): 214–224.
  • Tingting, L., J. A. Caton, and T. J. Jacobs. 2017. “A Numerical Investigation on the Influence of Engine Coolant Temperature under Low Temperature Combustion in A Diesel Engine.” Combustion Science and Technology 189 (11): 1992–2011. doi:10.1080/00102202.2017.1353501.
  • Tomazic, D., and A. Pfeifer, 2002, “Cooled EGR––a Must or an Option for 2002/04”, SAE Technical paper 2002-01-0962. doi: 10.4271/2002-01-0962
  • Tripathi, G., P. Sharma, A. Dhar, and A. Sadiki. 2019. “Computational Investigation of Diesel Injection Strategies in Hydrogen-Diesel Dual Fuel Engine.” Sustainable Energy Technologies and Assessments 36: 100543. doi:10.1016/j.seta.2019.100543.
  • Tsolakis, A., and A. Megaritis. 2005. “Partially Premixed Charge Compression Ignition Engine with On-board Production by Exhaust Gas Fuel Reforming of Diesel and Biodiesel.” International Journal of Hydrogen Energy 30 (7): 731–745. doi:10.1016/j.ijhydene.2004.06.013.
  • Wakisaka, T., Y. Shimamoto, and Y. Issihiki, 1986, “Three-dimensional Numerical Analysis of In-cylinder Flows in Reciprocating Engines”, SAE Technical Paper 860464. doi: 10.4271/860464
  • Walter, B., and B. Gatellier. 2002. “Development of the High-power NADI Concept Using Dual-mode Diesel Combustion to Achieve Zero Nox and Particulate Emissions.” SAE Technical Paper 2002-01-1744. doi:10.4271/2002-01-1744.
  • Wang, T., D. Liu, G. Wang, B. Tan, and Z. Peng. 2015. “Effects of Variable Valve Lift on In-Cylinder Air Motion.” Energies 8 (12): 13778–13795. doi:10.3390/en81212397.
  • Wei, H., W. Zhao, L. Zhou, and G. Shu. 2018. “Numerical Investigation of Diesel Spray Flame Structures under Diesel Engine-Relevant Conditions Using Large Eddy Simulation.” Combustion Science and Technology 190 (5): 909–932. doi:10.1080/00102202.2017.1417270.
  • Weissbäck, M. 2003. “Alternative Combustion - an Approach for Future HSDI Diesel Engines.” MTZ Worldwide 9/2003 Jahrgang 64: 718–727.
  • Wong, K. I., P. K. Wong, and C. S. Cheung. 2015. “Modelling and Prediction of Diesel Engine Performance Using Relevance Vector Machine.” International Journal of Green Energy 12 (3): 265–271. doi:10.1080/15435075.2014.891513.
  • Yilmaz, N. 2012. “Performance and Emission Characteristics of a Diesel Engine Fuelled with Biodiesel– Ethanol and Biodiesel–methanol Blends at Elevated Air Temperatures.” Fuel 94: 440–443. doi:10.1016/j.fuel.2011.11.015.
  • Zhang, L., T. Ueda, T. Takatsuki and Yokota, K, 1995, “A Study of the Effects of Chamber Geometries on Flame Behaviour in A Direct Injection Diesel Engine”, SAE Technical paper 952515. doi: 10.4271/952515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.