129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced geometrically-nonlinear poro-FG shear-deformable beams under moving load in discrete state-space

, &
Pages 786-814 | Received 15 Nov 2020, Accepted 02 Apr 2021, Published online: 21 Jun 2021

References

  • Alimoradzadeh, M., M. Salehi, and S. M. Esfarjani. 2019. “Nonlinear Dynamic Response of an Axially Functionally Graded (AFG) Beam Resting on Nonlinear Elastic Foundation Subjected to Moving Load.” Nonlinear Engineering 8 (1): 250–260. doi:10.1515/nleng-2018-0051. January 28.
  • Chen, D., J. Yang, and S. Kitipornchai. 2016. “Free and Forced Vibrations of Shear Deformable Functionally Graded Porous Beams.” International Journal of Mechanical Sciences 108 (April 1): 14–22. doi:10.1016/j.ijmecsci.2016.01.025.
  • Chen, Y., Y. Fu, J. Zhong, and C. Tao. 2017. “Nonlinear Dynamic Responses of Fiber-metal Laminated Beam Subjected to Moving Harmonic Loads Resting on Tensionless Elastic Foundation.” Composites Part B: Engineering 131 (December 15): 253–259. doi:10.1016/j.compositesb.2017.07.051.
  • Esen, I. 2019a. “Dynamic Response of a Functionally Graded Timoshenko Beam on Two-parameter Elastic Foundations Due to a Variable Velocity Moving Mass.” International Journal of Mechanical Sciences 153 (April 1): 21–35. doi:10.1016/j.ijmecsci.2019.01.033.
  • Esen, I. 2019b. “Dynamic Response of Functional Graded Timoshenko Beams in a Thermal Environment Subjected to an Accelerating Load.” European Journal of Mechanics-A/Solids 78 (November 1): 103841. doi:10.1016/j.euromechsol.2019.103841.
  • Esen, I., M. A. Koc, and Y. Cay. 2018. “Finite Element Formulation and Analysis of a Functionally Graded Timoshenko Beam Subjected to an Accelerating Mass Including Inertial Effects of the Mass.” Latin American Journal of Solids and Structures 15 (10): 10. doi:10.1590/1679-78255102.
  • Kadivar, M. H., and S. R. Mohebpour. 1998. “Forced Vibration of Unsymmetric Laminated Composite Beams under the Action of Moving Loads.” Composites Science and Technology 58 (10): 1675–1684. doi:10.1016/S0266-3538(97)00238-8. October 1.
  • Khalili, S. M., A. A. Jafari, and S. A. Eftekhari. 2010. “A Mixed Ritz-DQ Method for Forced Vibration of Functionally Graded Beams Carrying Moving Loads.” Composite Structures 92 (10): 2497–2511. doi:10.1016/j.compstruct.2010.02.012. September 1.
  • Kumar, C. S., C. Sujatha, and K. Shankar. 2015. “Vibration of Simply Supported Beams under A Single Moving Load: A Detailed Study of Cancellation Phenomenon.” International Journal of Mechanical Sciences 99 (August 1): 40–47. doi:10.1016/j.ijmecsci.2015.05.001.
  • Lal, A., N. L. Shegokar, and B. N. Singh. 2017. “Finite Element Based Nonlinear Dynamic Response of Elastically Supported Piezoelectric Functionally Graded Beam Subjected to Moving Load in Thermal Environment with Random System Properties.” Applied Mathematical Modelling 44 (April 1): 274–295. doi:10.1016/j.apm.2016.12.004.
  • Malekzadeh, P., and S. M. Monajjemzadeh. 2016. “Dynamic Response of Functionally Graded Beams in a Thermal Environment under a Moving Load.” Mechanics of Advanced Materials and Structures 23 (3): 248–258. doi:10.1080/15376494.2014.949930. March 3.
  • Museros, P., E. Moliner, and M. D. Martínez-Rodrigo. 2013. “Free Vibrations of Simply-supported Beam Bridges under Moving Loads: Maximum Resonance, Cancellation and Resonant Vertical Acceleration.” Journal of Sound and Vibration 332 (2): 326–345. doi:10.1016/j.jsv.2012.08.008. January 21.
  • Nguyen, D. K., and V. T. Bui. 2017. “Dynamic Analysis of Functionally Graded Timoshenko Beams in Thermal Environment Using a Higher-order Hierarchical Beam Element.” Mathematical Problems in Engineering 2017. doi:10.1155/2017/7025750.
  • Simsek, M. 2010a. “Non-linear Vibration Analysis of a Functionally Graded Timoshenko Beam under Action of a Moving Harmonic Load.” Composite Structures 92 (10): 2532–2546. doi:10.1016/j.compstruct.2010.02.008. September 1.
  • Simsek, M. 2010b. “Vibration Analysis of a Functionally Graded Beam under a Moving Mass by Using Different Beam Theories.” Composite Structures 92 (4): 904–917. doi:10.1016/j.compstruct.2009.09.030. March 1.
  • Simsek, M. 2015. “Bi-directional Functionally Graded Materials (Bdfgms) for Free and Forced Vibration of Timoshenko Beams with Various Boundary Conditions.” Composite Structures 133 (December 1): 968–978. doi:10.1016/j.compstruct.2015.08.021.
  • Simsek, M., and M. Al-Shujairi. 2017. “Static, Free and Forced Vibration of Functionally Graded (FG) Sandwich Beams Excited by Two Successive Moving Harmonic Loads.” Composites Part B: Engineering 108 (January 1): 18–34. doi:10.1016/j.compositesb.2016.09.098.
  • Simsek, M., and T. Kocaturk. 2009. “Free and Forced Vibration of a Functionally Graded Beam Subjected to a Concentrated Moving Harmonic Load.” Composite Structures 90 (4): 465–473. doi:10.1016/j.compstruct.2009.04.024. October 1.
  • Simsek, M., T. Kocaturk, and S. D. Akbas. 2012. “Dynamic Behavior of an Axially Functionally Graded Beam under Action of a Moving Harmonic Load.” Composite Structures 94 (8): 2358–2364. doi:10.1016/j.compstruct.2012.03.020. July 1.
  • Sniady, P., S. Biernat, R. Sieniawska, and S. Zukowski. 2001. “Vibrations of the Beam Due to a Load Moving with Stochastic Velocity.” Probabilistic Engineering Mechanics 16 (1): 53–59. doi:10.1016/S0266-8920(00)00007-2. January 1.
  • Svedholm, C., A. Zangeneh, C. Pacoste, S. François, and R. Karoumi. 2016. “Vibration of Damped Uniform Beams with General End Conditions under Moving Loads.” Engineering Structures 126 (November 1): 40–52. doi:10.1016/j.engstruct.2016.07.037.
  • Wang, Y., and D. Wu. 2016. “Thermal Effect on the Dynamic Response of Axially Functionally Graded Beam Subjected to a Moving Harmonic Load.” Acta Astronautica 127 (October 1): 171–181. doi:10.1016/j.actaastro.2016.05.030.
  • Wang, Y., K. Xie, T. Fu, and C. Shi. 2019. “Vibration Response of a Functionally Graded Graphene Nanoplatelet Reinforced Composite Beam under Two Successive Moving Masses.” Composite Structures 209 (February 1): 928–939. doi:10.1016/j.compstruct.2018.11.014.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. “Linear and Nonlinear Vibration Analysis of Elastically Restrained Ends FGM Beams with Porosities.” Aerospace Science and Technology 32 (1): 111–120. doi:10.1016/j.ast.2013.12.002. January 1.
  • Xie, K., Y. Wang, X. Fan, and T. Fu. 2019. “Nonlinear Free Vibration Analysis of Functionally Graded Beams by Using Different Shear Deformation Theories.” Applied Mathematical Modelling. 10.1016/j.apm.2019.09.024. September 21.
  • Yang, J., Y. Chen, Y. Xiang, and X. L. Jia. 2008. “Free and Forced Vibration of Cracked Inhomogeneous Beams under an Axial Force and a Moving Load.” Journal of Sound and Vibration 312 (12): 166–181. doi:10.1016/j.jsv.2007.10.034. April 22.
  • Yas, M. H., and M. Heshmati. 2012. “Dynamic Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotube under the Action of Moving Load.” Applied Mathematical Modelling 36 (4): 1371–1394. doi:10.1016/j.apm.2011.08.037. April 1.
  • Zibdeh, H. S., and M. Abu-Hilal. 2003. “Stochastic Vibration of Laminated Composite Coated Beam Traversed by a Random Moving Load.” Engineering Structures 25 (3): 397–404. doi:10.1016/S0141-0296(02)00181-5. February 1.
  • Zohoor, H., and S. M. Khorsandijou. 2008a. “Enhanced Nonlinear 3D Euler–Bernoulli Beam with Flying Support.” Nonlinear Dynamics 51 (12): 217–230. doi:10.1007/s11071-007-9205-6. January 1.
  • Zohoor, H., and S. M. Khorsandijou. 2008b. “Dynamic Model of a Flying Manipulator with Two Highly Flexible Links.” Applied Mathematical Modelling 32 (10): 2117–2132. doi:10.1016/j.apm.2007.07.010. October 1.
  • Zohoor, H., S. M. Khorsandijou, and M. H. Abedinnasab. 2008. “Modified Nonlinear 3D Euler Bernoulli Beam Theory.” JSME International Journal of System Design and Dynamics 2 (5): 1170–1182. doi:10.1299/jsdd.2.1170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.