573
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the performance optimisation parameters of shell and tube heat exchanger using CFD

, , & ORCID Icon
Pages 830-843 | Received 19 Jan 2020, Accepted 05 Apr 2021, Published online: 26 Apr 2021

References

  • Andre´, L. H. 2008. “Costa and Eduardo M. Queiroz, “Design Optimization of Shell-and-tube Heat Exchangers”.” Applied Thermal Engineering 28 (14–15): 1798–1805. doi:10.1016/j.applthermaleng.2007.11.009.
  • Bagalagel, S. M., and A. Z. Sahin. 2002. “Design Optimization of Heat Exchangers with High-viscosity Fluids.” International Journal of Energy Research 26 (10): 867–880. doi:10.1002/er.825.
  • Bhatt, D., and P. M. Javhar. 2014. “Shell and Tube Heat Exchanger Performance Analysis.” International Journal of Science and Research (IJSR) 3 (9): 1872-1881.
  • Caputo, A. C., P. M. Pelagagge, and P. Salini. 2008. “Heat Exchanger Design Based on Economic Optimization.” Applied Thermal Engineering 28 (10): 1151–1159. doi:10.1016/j.applthermaleng.2007.08.010.
  • Caputo, A. C., P. M. Pelagagge, and P. Salini. 2015. “Heat Exchanger Optimized Design Compared with Installed Industrial Solutions.” Applied Thermal Engineering 87: 371–380. doi:10.1016/j.applthermaleng.2015.05.010.
  • CCM user guide. 2006. STAR-CD, version 4.02, CD-Adapco.
  • Chaudhuri, P. D., U. M. Diwekar, and J. S. Logsdon. 1997. “An Automated Approach for the Optimal Design of Heat Exchangers.” Ind. Eng. Chem. Res 36 (9): 3685–3693. doi:10.1021/ie970010h.
  • Cornelissen, R. L., and G. G. Hirs. 1999. “Thermodynamic Optimisation of a Heat Exchanger.” International Journal of Heat and Mass Transfer 42 (5): 951–960. doi:10.1016/S0017-9310(98)00118-5.
  • Davis, J. R. 2001. “Aluminum and Aluminum Alloys, in Alloying: Understanding the Basics, ASM International.” 351–416. doi:10.1361/autb2001p351.
  • Fettaka, S. 2013. “Jules Thibault and Yash Gupta, “Design of Shell-and-tube Heat Exchangers Using Multi-objective Optimization”.” International Journal of Heat and Mass Transfer 60: 343–354. doi:10.1016/j.ijheatmasstransfer.2012.12.047.
  • Gharbi, N. E., and A. Kheiri. 2015. “Momammed El Ganaoui and Ryan Blanchard, “Numerical Optimization of Heat Exchangers with Circular and Non-circular Shapes”.” Case Studies in Thermal Engineering 6: 194–203. doi:10.1016/j.csite.2015.09.006.
  • Guo, J. 2009. “Mingtian Xu and Lin Cheng, “The Application of Field Synergy Number in Shell-and-tube Heat Exchanger Optimization Design”.” Applied Energy 86 (10): 2079–2087. doi:10.1016/j.apenergy.2009.01.013.
  • Guo, J., L. Cheng, and M. Xu. 2009. “Optimization Design of Shell-and-tube Heat Exchanger by Entropy Generation Minimization and Genetic Algorithm.” Applied Thermal Engineering 29 (14–15): 2954–2960. doi:10.1016/j.applthermaleng.2009.03.011.
  • Gupta, J. P. 1987. “Fundamentals of Heat Exchanger and Pressure Vessel Technology.” International Journal of Heat and Fluid Flow 8 (4): 336. doi:10.1016/0142-727X(87)90072-5.
  • Hadidi, A., and A. Nazari. 2013. “Design and Economic Optimization of Shell-and-tube Heat Exchangers Using Biogeography-based (BBO) Algorithm.” Applied Thermal Engineering 51 (1–2): 1263–1272. doi:10.1016/j.applthermaleng.2012.12.002.
  • Hajabdollahi, H. 2012. “Pouria Ahmadi and Ibrahim Dince, “Exergetic Optimization of Shell-and-Tube Heat Exchangers Using NSGA-II”.” Heat Transfer Engineering 33 (7): 618–628. doi:10.1080/01457632.2012.630266.
  • Haseli, Y., I. Dincer, and G. F. Naterer. 2008. “Optimum Temperatures in a Shell and Tube Condenser with respect to Exergy.” International Journal of Heat and Mass Transfer 51 (9–10): 2462–2470. doi:10.1016/j.ijheatmasstransfer.2007.08.006.
  • Hatami, M., M. Jafaryar, D. D. Ganji, and M. Gorji-Bandpy. 2014. “Optimization of Finned-tube Heat Exchangers for Diesel Exhaust Waste Heat Recovery Using CFD and CCD Techniques.” International Communications in Heat and Mass Transfer 57: 254–263. doi:10.1016/j.icheatmasstransfer.2014.08.015.
  • HuiJun, F., C. LinGen, X. ZhiHui, and S. FengRui. 2013. “Constructal Optimization for H-shaped Multi-scale Heat Exchanger Based on Entransy Theory.” Sci China Tech Sci 56 (2): 299–307. doi:10.1007/s11431-012-5097-x.
  • Jafari, A., T. Tynjälä, S. M. Mousavi, and P. Sarkomaa. 2008. “Simulation of Heat Transfer in a Ferrofluid Using Computational Fluid Dynamics Technique.” International Journal of Heat and Fluid Flow 29 (4): 1197–1202. doi:10.1016/j.ijheatfluidflow.2008.01.007.
  • John Wiley. 1991. “Heat Exchanger Design, Second Edition.” International Journal of Heat and Fluid Flow 12 (2): 189–190.
  • Jose, V. C. 2001. “Vargas and Adrian Bejan, “Thermodynamic Optimization of Finned Cross-flow Heat Exchangers for Aircraft Environmental Control Systems.” International Journal of Heat and Fluid Flow 22 (6): 657–665. doi:10.1016/S0142-727X(01)00129-1.
  • Jularia, Y., and K. E. Torrance. 1987. “Computational Heat Transfer.” International Journal of Heat and Fluid Flow 8 (4): 336. doi:10.1016/0142-727X(87)90071-3.
  • Kara, Y. A., and Ö. Güraras. 2004. “A Computer Program for Designing of Shell-and-tube Heat Exchangers.” Applied Thermal Engineering 24 (13): 1797–1805. doi:10.1016/j.applthermaleng.2003.12.014.
  • Kay, J. M., R. M. Nedderman, and P. J. Moss. 1986. “Fluid Mechanics and Transfer Processes.” International Journal of Heat and Fluid Flow 7 (2): 88.
  • Kochetova, N. A., V. D. Loktionova, and A. S. Sidorovb. 2015. “Using the STAR CCM+ Software System for Modeling the Thermal State and Natural Convection in the Melt Metal Layer during Severe Accidents in VVER Reactors.” Thermal Engineering 62 (9): 663–672. doi:10.1134/S0040601515050055.
  • Lei, Y.-G., and Y.-L. He. 2008. “Pan Chu and Rui Li, “Design and Optimization of Heat Exchangers with Helical Baffles”.” Chemical Engineering Science 63 (17): 4386–4395. doi:10.1016/j.ces.2008.05.044.
  • Leschziner, M. A. 1984. “Computational Methods for Fluid Flow.” International Journal of Heat and Fluid Flow 5 (2): 112. doi:10.1016/0142-727X(84)90029-8.
  • Leschziner, M. A. 1989. “Modeling Turbulent Recirculating Flows by Finite-volume Methods—current Status and Future Directions.” International Journal of Heat and Fluid Flow 10 (3): 186–202. doi:10.1016/0142-727X(89)90038-6.
  • Leschziner, M. A. 1990. “Computational Fluid Dynamics: G. De Vahl Davis and C. Fletcher, North-Holland.” International Journal of Heat and Fluid Flow 11 (1): 82–83. doi:10.1016/0142-727X(90)90031-6.
  • Li, M., and S. J. Zinkle. 2012. “Physical and Mechanical Properties of Copper and Copper Alloys.” Comprehensive Nuclear Materials 4: 667–690.
  • Liu, Z., J. Chen, and S.-H. Xiao. 2016. “Thermo-Mechanical Fatigue Study of Gasoline Engine Exhaust Manifold Based on Weak Coupling of CFD and FE.” SAE Technical Paper 2016-01-2350, doi:10.4271/2016-01-2350.
  • Maley, K. 2012. “Best Practices: Volume Meshing.” STAR South-East Asian Conference, Singapore.
  • Manassaldi, J. I., N. J. Scenna, and S. F. Mussati. 2014. “Optimization Mathematical Model for the Detailed Design of Air Cooled Heat Exchangers.” Energy 64: 734–746. doi:10.1016/j.energy.2013.09.062.
  • Mohammadi, K., and M. R. Malayeri. 2013. “Parametric Study of Gross Flow Maldistribution in a Single-pass Shell and Tube Heat Exchanger in Turbulent Regime.” International Journal of Heat and Fluid Flow 44: 14–27. doi:10.1016/j.ijheatfluidflow.2013.02.010.
  • Neve, R. S., and Y. Y. Yan. 1996. “Enhancement of Heat Exchanger Performance Using Combined Electrohydrodynamic and Passive Methods.” International Journal of Heat and Fluid Flow 17 (4): 403–409. doi:10.1016/0142-727X(95)00016-J.
  • Orr, H. G., S. D. Clers, G. L. Simpson, M. Hughes, R. W. Battarbee, L. Cooper, M. J. Dunbar, et al. 2010. “Changing Water Temperatures: A Surface Water Archive for England and Wales.” BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle, 1–8.
  • Ozden, E., and I. Tari. 2010. “Shell Side CFD Analysis of a Small Shell-and-tube Heat Exchanger.” Energy Conversion and Management 51 (5): 1004–1014. doi:10.1016/j.enconman.2009.12.003.
  • Patel, V. K., and R. V. Rao. 2010. “Design Optimization of Shell-and-tube Heat Exchanger Using Particle Swarm Optimization Technique.” Applied Thermal Engineering 30 (11–12): 1417–1425. doi:10.1016/j.applthermaleng.2010.03.001.
  • Pekdemir, T., T. W. Davies, L. E. Haseler, and A. D. Diaper. 1993a. “Flow Distribution on the Shell Side of a Cylindrical Shell and Tube Heat Exchanger.” International Journal of Heat and Fluid Flow 14 (1): 76–85. doi:10.1016/0142-727X(93)90043-M.
  • Pekdemir, T., T. W. Davies, L. E. Haseler, and A. D. Diaper. 1993b. “Flow Distribution on the Shellside of a Cylindrical Shell and Tube Heat Exchanger.” International Journal of Heat and Fluid Flow 14 (1). doi:10.1017/0142-727X(93)90043-M.
  • Peyret, R., and T. D. Taylor. 1983. “Computational Methods for Fluid Flow.” International Journal of Heat and Fluid Flow 4 (3): 182.
  • Ponce-Ortega, J. M., M. Serna-González, and A. Jiménez-Gutiérrez. 2009. “Use of Genetic Algorithms for the Optimal Design of Shell-and-tube Heat Exchangers.” Applied Thermal Engineering 29 (2–3): 203–209. doi:10.1016/j.applthermaleng.2007.06.040.
  • Prasad, D. V., and D. R. Khare. 2013. “Numerical Flow Simulation Using Star CCM+.” International Conference on Recent Trends in Applied Sciences with Engineering Applications, Vol.3, No.6, India.
  • Rao, R. V., and V. K. Patel. 2010. “Thermodynamic Optimization of Cross Flow Plate-fin Heat Exchanger Using a Particle Swarm Optimization Algorithm.” International Journal of Thermal Sciences 49 (9): 1712–1721. doi:10.1016/j.ijthermalsci.2010.04.001.
  • Ravikumaur, S. G., K. N. Seetharamu, and P. A. Aswatha Narayana. 1988. “Finite Element Analysis of Shell and Tube Heat Exchanger.” International Communications in Heat and Mass Transfer 15 (2): 151–163. doi:10.1016/0735-1933(88)90062-0.
  • Reneaume, J.-M., H. Pingaud, and N. Niclout. 2000. “Optimization of Plate Fin Heat Exchangers a Continuous Formulation.” Trans IChemE 78 (6). doi:10.1205/026387600528058.
  • Reppich, M., and J. Kohoutek. 1994. “Optimal Design of Shell-and-tube Heat Exchangers.” Computers Chem. Engng 18 (Suppl.): S295–S299. doi:10.1016/0098-1354(94)80049-9.
  • Ruchi, K. 2012. “Prasad Vishnu and Mittal Sushil Kumar, “Effect of Runner Solidity on Performance of Elbow Draft Tube”.” Energy Procedia 14: 2054–2059. doi:10.1016/j.egypro.2011.12.1207.
  • Saeedan, M., and M. Bahiraei. 2015. “Effects of Geometrical Parameters on Hydrothermal Characteristics of Shell-and-tube Heat Exchanger with Helical Baffles: Numerical Investigation, Modeling and Optimization.” Chemical Engineering Research & Design 96: 43–53. doi:10.1016/j.cherd.2015.02.004.
  • Saffar-Avval, M., and E. Damangir. 1995. “A General Correlation for Determining Optimum Baffle Spacing for All Types of Shell and Tube Exchangers.” International Journal of Heat Mass Transfer 38 (13): 2501–2506. doi:10.1016/0017-9310(94)00358-3.
  • Salahuddin, U. 2015. “Muhammad Bilal and Haider Ejaz, “A Review of the Advancements Made in Helical Baffles Used in Shell and Tube Heat Exchangers”.” International Communications in Heat and Mass Transfer 67: 104–108. doi:10.1016/j.icheatmasstransfer.2015.07.005.
  • Sanaye, S., and H. Hajabdollahi. 2010. “Multi-objective Optimization of Shell and Tube Heat Exchangers.” Applied Thermal Engineering 30 (14–15): 1937–1945. doi:10.1016/j.applthermaleng.2010.04.018.
  • Sharma, S. K., and V. Sharma. 2013. “Maximizing the Heat Transfer through Fins Using CFD as a Tool.” International Journal of Recent Advances in Mechanical Engineering (IJMECH) 2 (3): 13-28.
  • Sheikholeslami, M., and D. D. Ganji. 2016. “Heat Transfer Enhancement in an Air to Water Heat Exchanger with Discontinuous Helical Turbulators; Experimental and Numerical Studies.” Energy 116 (Part 1): 341–352. doi:10.1016/j.energy.2016.09.120.
  • Shiba, T., and A. Bejan. 2001. “Thermodynamic Optimization of Geometric Structure in the Counterflow Heat Exchanger for an Environmental Control System.” Energy 26 (5): 493–511. doi:10.1016/S0360-5442(01)00011-1.
  • Shina, S. 2007. Stainless Steel: Tables of Technical Properties, Materials and Applications Series, Vol.5, second edition, Euro Inox, Luxemborg
  • Shina, S., and W. I. Lee. 2000. “Finite Element Analysis of Incompressible Viscous Flow with Moving Free Surface by Selective Volume of Fluid Method.” International Journal of Heat and Fluid Flow 21 (2): 197–206. doi:10.1016/S0142-727X(99)00083-1.
  • Siddiqui, M. H. K., Nasiruddin. 2007. Heat Transfer Augmentation in a Heat Exchanger Tube Using a Baffle. International Journal of Heat and Fluid Flow 28 (2): 318–328.doi:10.1016/j.ijheatfluidflow.2006.03.020.
  • Sohankar, A. 2007. “Heat Transfer Augmentation in a Rectangular Channel with a Vee-shaped Vortex Generator.” International Journal of Heat and Fluid Flow 28 (2): 306–317. doi:10.1016/j.ijheatfluidflow.2006.03.002.
  • Söylemez, M. S. 2000. “On the Optimum Heat Exchanger Sizing for Heat Recovery.” Energy Conversion and Management 41 (13): 1419–1427. doi:10.1016/S0196-8904(99)00181-8.
  • Stewart, S. W., S. V. Shelton, and K. A. Aspelund 2013. “Finned Tube Heat Exchanger Optimization.” 2nd International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics,  Victoria Falls, Zambia.
  • Sun, S.-Y., L. Ya-dong, and C.-Q. Yan. 1993. “Optimization in Calculation of Shell-tube Heat Exchanger.” International Communications in Heat and Mass Transfer 20 (5): 675–685. doi:10.1016/0735-1933(93)90079-B.
  • Vago, G. J. 1992. “Heat Exchangers: By Holger Martin Hemisphere Publishing Corporation, 1992, 207.” International Journal of Heat and Fluid Flow 13 (4): 412. doi:10.1016/0142-727X(92)90012-X.
  • Vegendla, P., T. Sofu, R. Saha, and M. Madurai Kumar 1996.“Fan Shroud Optimization Using Adjoint Solver.” SAE Technical Paper 2016-01-8070, 2016, doi:10.4271/2016-01-8070.
  • Vishnu, P., K. Ruchi, and A. Chincholikar. 2010. Hydraulic Performance of Elbow Draft Tube for Different Geometric Configurations Using CFD. India: IGHEN-2010, AHEC, IIT Roorkee.
  • Walraven, D., B. Laenen, and W. D’haeseleer. 2014. “Optimum Configuration of Shell-and-tube Heat Exchangers for the Use in Low-temperature Organic Rankine Cycles.” Energy Conversion and Management 83: 177–187. doi:10.1016/j.enconman.2014.03.066.
  • Wang, S. 2009. “Jian Wen and Yanzhong Li, “An Experimental Investigation of Heat Transfer Enhancement for a Shell-and-tube Heat Exchanger”.” Applied Thermal Engineering 29 (11–12): 2433–2438. doi:10.1016/j.applthermaleng.2008.12.008.
  • Yang, J., A. Fan, W. Liu, and A. M. Jacobi. 2014. “Optimization of Shell-and-tube Heat Exchangers Conforming to TEMA Standards with Designs Motivated by Constructal Theory.” Energy Conversion and Management 78: 468–476. doi:10.1016/j.enconman.2013.11.008.
  • Yilmaz, M., O. N. Sara, and S. Karsli. 2001. “Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis.” Exergy, An International Journal 1 (4): 278–294. doi:10.1016/S1164-0235(01)00034-6.
  • Zhua, J., and W. Zhangb. 2004. “Optimization Design of Plate Heat Exchangers (PHE) for Geothermal District Heating Systems.” Geothermics 33 (3): 337–347. doi:10.1016/j.geothermics.2003.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.