385
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of surface composites on different aluminium alloys via friction stir process - A review report

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1489-1512 | Received 22 Oct 2020, Accepted 21 Dec 2021, Published online: 07 Jan 2022

References

  • Abd Elhamid, M., M. M. Emara, and H. G. Salem. 2014. “Influence of Mixing Technique on the Mechanical Properties and Structural Evolution of Al-NiAl Composites.” Journal of Materials Engineering and Performance 23 (10): 3425–3435. doi:10.1007/s11665-014-1138-x.
  • Adedotun Adetunla, E. A. 2018. “Mechanical Characterization of Al/Ti-6Al-4V Surface Composite Fabricated via FSP: A Comparison of Tool Geometry and Number of Passes.” Materials Research Express 5 (11): 0–31. doi:10.1088/2053-1591/aadce5.
  • Ahn, B., D. Choi, Y. Kim, and S. Jung. 2012. “Fabrication of SiC p/AA5083 Composite via Friction Stir Welding.” Transactions of Nonferrous Metals Society of China 22: s634–s638. doi:10.1016/S1003-6326(12)61777-4.
  • Alidokht, S. A., A. Abdollah-zadeh, S. Soleymani, and H. Assadi. 2011. “Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing.” Materials & Design 32 (5): 2727–2733. doi:10.1016/j.matdes.2011.01.021.
  • Ammouri, A. H., G. Kridli, G. Ayoub, and R. F. Hamade. 2015. “Relating Grain Size to the Zener-Hollomon Parameter for Twin-roll-cast AZ31B Alloy Refined by Friction Stir Processing.” Journal of Materials Processing Technology 222: 301–306. doi:10.1016/j.jmatprotec.2015.02.037.
  • Aruri, D., K. Adepu, K. Adepu, and K. Bazavada. 2013. “Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(sic + Gr) and (Sic + Al2O3)] Fabricated by Friction Stir Processing.” Journal of Materials Research and Technology 2 (4): 362–369. doi:10.1016/j.jmrt.2013.10.004.
  • Asadi, P., G. Faraji, and M. K. Besharati. 2010. “Producing of AZ91/SiC Composite by Friction Stir Processing (FSP).” The International Journal of Advanced Manufacturing Technology 51 (1–4): 247–260. doi:10.1007/s00170-010-2600-z.
  • Asadi, P., M. K. B. Givi, N. Parvin, and A. Araei. 2012. “On the Role of Cooling and Tool Rotational Direction on Microstructure and Mechanical Properties of Friction Stir Processed AZ91. The International Journal of Advanced Manufacturing Technology 63(9–12): 987–997. doi:10.1007/s00170-012-3971-0.
  • Ashjari, M., A. Mostafapour Asl, and S. Rouhi. 2015. “Experimental Investigation on the Effect of Process Environment on the Mechanical Properties of AA5083/Al2O3 Nanocomposite Fabricated via Friction Stir Processing.” Material Science Engineering A 645: 40–46. doi:10.1016/j.msea.2015.07.093.
  • Azimi-Roeen, G., S. F. Kashani-Bozorg, M. Nosko, and P. Švec. 2017. “Reactive Mechanism and Mechanical Properties of In-situ Hybrid Nano-composites Fabricated from an Al–Fe2O3 System by Friction Stir Processing.” Materials Characterization 127: 279–287. doi:10.1016/j.matchar.2017.03.007.
  • Azimi-Roeen, G., S. F. Kashani-Bozorg, M. Nosko, Š. Nagy, and I. Maťko. 2018. “Formation of Al/(Al13Fe4 + Al2O3) Nano-composites via Mechanical Alloying and Friction Stir Processing.” Journal of Materials Engineering and Performance 27 (2): 471–482. doi:10.1007/s11665-018-3170-8.
  • Azizieh, H. S. K. M., R. Pourmodheji, A. N. Larki, M. A. G. Dezfuli, and H. A. Rezaei. 2019. “Effect of Multi-pass Friction Stir Processing on the Microstructure and Hardness of AA1100/Al13Fe4 in Situ Composites.” Materials Research Express in press: 20.
  • Azizieh, M., A. H. Kokabi, and P. Abachi. 2011. “Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al 2 O 3 Nanocomposites Fabricated by Friction Stir Processing.” Materials & Design 32 (4): 2034–2041. doi:10.1016/j.matdes.2010.11.055.
  • Bae, D. H., and A. K. Ghosh. 2000. “GRAIN SIZE AND TEMPERATURE DEPENDENCE OF SUPERPLASTIC DEFORMATION IN AN Al- Mg ALLOY UNDER ISOSTRUCTURAL CONDITION.“ Acta materialia 48(6): 1207–1224.
  • Bae, D. H., and A. K. Ghosh. 2002a. “Cavity Formation and Early Growth in a Superplastic Al – Mg Alloy.“ Acta materialia 50(3): 511–523.
  • Bae, D. H., and A. K. Ghosh. 2002b. “Cavity Growth during Superplastic Flow in an Al – Mg Alloy : I. Experimental Study.“ Acta materialia 50(5): 993–1009.
  • Balakrishnan, M., I. Dinaharan, R. Palanivel, and R. Sathiskumar. 2018. “Influence of Friction Stir Processing on Microstructure and Tensile Behavior of AA6061/Al 3 Zr Cast Aluminum Matrix Composites.” Journal of Manufacturing Processes 38 (8): 148–157. doi:10.1007/s12206-013-0630-9. 2019.
  • Balakrishnan, M., I. Dinaharan, R. Palanivel, and R. Sathiskumar. 2019. “Effect of Friction Stir Processing on Microstructure and Tensile Behavior of AA6061/Al3Fe Cast Aluminum Matrix Composites.” Journal of Alloys and Compounds 785: 531–541. doi:10.1016/j.jallcom.2019.01.211.
  • Balakrishnan, M., I. Dinaharan, R. Palanivel, and R. Sivaprakasam. 2015. “Synthesize of AZ31/TiC Magnesium Matrix Composites Using Friction Stir Processing.” Journal of Magnesium and Alloys 3 (1): 76–78. doi:10.1016/j.jma.2014.12.007.
  • Baradeswaran, A., and A. Elaya Perumal. 2014. “Study on Mechanical and Wear Properties of Al 7075/Al2O3/graphite Hybrid Composites.” Composites Part B: Engineering 56: 464–471. doi:10.1016/j.compositesb.2013.08.013.
  • Bararpour, S. M., H. Jamshidi Aval, and R. Jamaati. 2019. “Mechanical Alloying by Friction Surfacing Process.” Materials Letters 254: 394–397. doi:10.1016/j.matlet.2019.07.113.
  • Basavarajappa, S., G. Chandramohan, K. Mukund, M. Ashwin, and M. Prabu. 2006. “Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites.” Journal of Materials Engineering and Performance 15 (6): 668–674. doi:10.1361/105994906X150803.
  • Bauri, R., D. Yadav, and G. Suhas. 2011. “Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al-TiC in Situ Composite.” Material Science Engineering A 528 (13–14): 4732–4739. doi:10.1016/j.msea.2011.02.085.
  • Berbon, P. B., W. H. Bingel, R. S. Mishra, C. C. Bampton, and M. W. Mahoney. 2001. “Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys.” Scripta Materialia 44 (1): 61–66. doi:10.1016/S1359-6462(00)00578-9.
  • Chang, C. I., C. J. Lee, and J. C. Huang. 2004. “Relationship between Grain Size and Zener-Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys.” Scripta Materialia 51 (6): 509–514. doi:10.1016/j.scriptamat.2004.05.043.
  • Chen, C. L., G. West, and R. C. Thomson. 2006. “Characterisation of Intermetallic Phases in Multicomponent Al-Si Casting Alloys for Engineering Applications.“ Materials science forum 521: 359–364. www.scientific.net/MSF.519-521.359.
  • Chen, Y., H. Ding, J. Li, Z. Cai, J. Zhao, and W. Yang. 2016. “Influence of Multi-pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy.” Material Science Engineering A 650: 281–289. doi:10.1016/j.msea.2015.10.057.
  • Choi, D. H., Y. H. Kim, B. W. Ahn, Y. Il Kim, and S. B. Jung. 2013. “Microstructure and Mechanical Property of A356 Based Composite by Friction Stir Processing.” Transactions of Nonferrous Metals Society of China 23 (2): 335–340. doi:10.1016/S1003-6326(13)62466-8.
  • Cui, G. R., Z. Y. Ma, and S. X. Li. 2009. “The Origin of Non-uniform Microstructure and Its Effects on the Mechanical Properties of a Friction Stir Processed Al – Mg Alloy.” Acta Materialia 57 (19): 5718–5729. doi:10.1016/j.matpr.2019.05.019.
  • Deepu, J., P. Kuppan, A. S. Sbalan, and R. Oyyaravelu. 2016. “Investigations on the Machinability of Waspaloy under Dry Environment.” IOP Conference Series: Materials Science and Engineering 149 (1): 1–13. doi:10.1088/1757-899X/149/1/012012.
  • Devaraju, A., A. Kumar, A. Kumaraswamy, and B. Kotiveerachari. 2013. “Influence of Reinforcements (Sic and Al2O3) and Rotational Speed on Wear and Mechanical Properties of Aluminum Alloy 6061-T6 Based Surface Hybrid Composites Produced via Friction Stir Processing.” Materials & Design 51: 331–341. doi:10.1016/j.matdes.2013.04.029.
  • Dhayalan, R., K. Kalaiselvan, and R. Sathiskumar. 2014. “Characterization of AA6063/SiC-Gr Surface Composites Produced by FSP Technique.” Procedia Engineering 97 (December): 625–631. doi:10.1016/j.proeng.2014.12.291.
  • Dolatkhah, A., P. Golbabaei, M. K. Besharati Givi, and F. Molaiekiya. 2012. “Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing.” Materials & Design 37: 458–464. doi:10.1016/j.matdes.2011.09.035.
  • El-Danaf, E. A., M. M. El-Rayes, and M. S. Soliman. 2010. “Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility.” Materials & Design 31 (3): 1231–1236. doi:10.1016/j.matdes.2009.09.025.
  • Elangovan, K., and V. Balasubramanian. 2008. “Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy.” Materials & Design 29 (2): 362–373. doi:10.1016/j.matdes.2007.01.030.
  • Esfahani, M. M., H. D. Manesh, M. Esmailzadeh, and E. Roshanaei. 2018. “Microstructure and Wear Characteristics of 1050Al/Fe Surface Composites by Friction Stir Processing.” Materials Research Express 5 (12): 126518. doi:10.1088/2053-1591/aae145.
  • Feng, A. H., and Z. Y. Ma. 2009. “Microstructural Evolution of Cast Mg – Al – Zn during Friction Stir Processing and Subsequent Aging.” Acta Materialia 57 (14): 4248–4260. doi:10.1016/j.actamat.2009.05.022.
  • Fotoohi, H., B. Lotfi, Z. Sadeghian, and J. Won Byeon. 2019. “Microstructural Characterization and Properties of in Situ Al-Al 3 Ni/TiC Hybrid Composite Fabricated by Friction Stir Processing Using Reactive Powder.” Materials Characterization 149 (January): 124–132. doi:10.1016/j.matchar.2019.01.024.
  • Froes, C., F. H. Suryanarayana, and D. Eliezer. 1999. “Production, Characteristics, and Commercialization of Titanium Aluminides.” ISIJ International 31 (10): 1235–1248. doi:10.2355/isijinternational.31.1235.
  • Gandra, J., R. Miranda, P. Vilaa, A. Velhinho, and J. P. Teixeira. 2011. “Functionally Graded Materials Produced by Friction Stir Processing.” Journal of Materials Processing Technology 211 (11): 1659–1668. doi:10.1016/j.jmatprotec.2011.04.016.
  • Gangil, M. H. A. N., A. Noor Siddiquee, S. Maheshwari, and Abdulrahman M. Al-Ahmari. 2018a. “State of the Art of Ex-Situ Aluminium Matrix Composite Fabrication through Friction Stir Processing.” Archives of Metallurgy and Materials 63 (2): 719–738. doi:10.24425/122398.
  • Gangil, N., A. N. Siddiquee, and S. Maheshwari. 2017. “Aluminium Based In-situ Composite Fabrication through Friction Stir Processing: A Review.” Journal of Alloys and Compounds 715: 91–104. doi:10.1016/j.jallcom.2017.04.309.
  • Gangil, N., S. Maheshwari, and A. N. Siddiquee. 2018a. “Multipass FSP on AA6063-T6 Al: Strategy to Fabricate Surface Composites.” Materials and Manufacturing Processes 33 (7): 805–811. doi:10.1080/10426914.2017.1415448.
  • Gangil, N., S. Maheshwari, and A. N. Siddiquee. 2018b. “Surface Nanocomposite Fabrication on AA6063 Aluminium Alloy Using Friction Stir Processing: An Investigation into the Effect of the Tool-shoulder Diameter on the Composite Microstructure.” Materiali in Tehnologije 52 (1): 77–82. doi:10.17222/mit.2017.172.
  • Gangil, N., S. Maheshwari, and A. N. Siddiquee. 2018c. “Influence of Tool Pin and Shoulder Geometries on Microstructure of Friction Stir Processed AA6063/SiC Composites.” Mechanics & Industry 19 (2): 211. doi:10.1051/meca/2018010.
  • Gangil, N., S. Maheshwari, and A. N. Siddiquee. 2018d. “Novel Use of Distribution Facilitators and Time–Temperature Range for Strengthening in Surface Composites on AA7050-T7451.” Metallography, Microstructure, and Analysis 7 (5): 561–577. doi:10.1007/s13632-018-0474-x.
  • Gangil, N., S. Maheshwari, A. N. Siddiquee, M. H. Abidi, M. A. El-Meligy, and J. A. Mohammed. 2019. “Investigation on Friction Stir Welding of Hybrid Composites Fabricated on Al-Zn-Mg-Cu Alloy through Friction Stir Processing.” Journal of Materials Research and Technology 8 (5): 3733–3740. doi:10.1016/j.jmrt.2019.06.033.
  • Gangil, N., S. Maheshwari, E. A. Nasr, A. M. El-Tamimi, M. A. El-Meligy, and A. N. Siddiquee. 2018b. “Another Approach to Characterize Particle Distribution during Surface Composite Fabrication Using Friction Stir Processing.” Metals (Basel) 8 (8): 568. doi:10.3390/met8080568.
  • Gerlich, A. P. 2017. “Critical Assessment: Friction Stir Processing, Potential, and Problems.” Materials Science and Technology 33 (10): 1139–1144. doi:10.1080/02670836.2017.1300420.
  • Gudla, V. C., F. Jensen, A. Simar, R. Shabadi, and R. Ambat. 2015. “Friction Stir Processed Al-TiO 2 Surface Composites: Anodising Behaviour and Optical Appearance.” Applied Surface Science 324: 554–562. doi:10.1016/j.apsusc.2014.10.151.
  • Harati, J. A. S. F., M. Shamanian, M. Atapour, and S. Hasani. 2019. “The Effect of Microstructure and Texture Evolution on the Hardness Properties of the Cold Rolled AA7075-T6 Aluminum Alloy during the Friction Stir Processing.” Materials Research Express 6 (4): 046559. doi:10.1088/2053-1591/aafe48.
  • Hashemi, R., and G. Hussain. 2015. “Wear Performance of Al/TiN Dispersion Strengthened Surface Composite Produced through Friction Stir Process: A Comparison of Tool Geometries and Number of Passes.” Wear 324-325: 45–54. doi:10.1016/j.wear.2014.11.024.
  • Heydarian, A., K. Dehghani, and T. Slamkish. 2014. “Optimizing Powder Distribution in Production of Surface Nano-composite via Friction Stir Processing.” Metallurgical and Materials Transactions B 45 (3): 821–826. doi:10.1007/s11663-014-0025-z.
  • Hoziefa, W., S. Toschi, M.M.Z. Ahmed, Al. Morri, A.A. Mahdy, M.M. El-Sayed Seleman, I. El-Mahallawi, et al. 2016. “Influence of Friction Stir Processing on the Microstructure and Mechanical Properties of a Compocast AA2024-Al2O3 Nanocomposite.” Materials & Design 106 :273–284. doi:10.1016/j.matdes.2016.05.114.
  • Hsu, C. J., C. Y. Chang, P. W. Kao, N. J. Ho, and C. P. Chang. 2006. “Al-Al3Ti Nanocomposites Produced in Situ by Friction Stir Processing.” Acta Materialia 54 (19): 5241–5249. doi:10.1016/j.actamat.2006.06.054.
  • Hsu, C. J., P. W. Kao, and N. J. Ho. 2005. “Ultrafine-grained Al-Al2Cu Composite Produced in Situ by Friction Stir Processing.” Scripta Materialia 53 (3): 341–345. doi:10.1016/j.scriptamat.2005.04.006.
  • Huang, G., W. Hou, J. Li, and Y. Shen. 2018. “Surface & Coatings Technology Development of Surface Composite Based on Al-Cu System by Friction Stir Processing: Evaluation of Microstructure, Formation Mechanism and Wear Behavior.” Surface and Coatings Technology 344 (March): 30–42. doi:10.1016/j.surfcoat.2018.03.005.
  • Huang, L. J., L. Geng, A. B. Li, X. P. Cui, H. Z. Li, and G. S. Wang. 2009. “Characteristics of Hot Compression Behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy with an Equiaxed Microstructure.” Material Science Engineering A 505 (1–2): 136–143. doi:10.1016/j.msea.2008.12.041.
  • Humphreys, F. J., P. B. Prangnell, and R. Priestner. 2001. “Fine-grained Alloys by Thermomechanical Processing. Current Opinion in Solid State and Materials Science 5(1): 15–21.
  • Izadi, H., A. Nolting, C. Munro, D. P. Bishop, K. P. Plucknett, and A. P. Gerlich. 2013. “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy.” Journal of Materials Processing Technology 213 (11): 1900–1907. doi:10.1016/j.jmatprotec.2013.05.012.
  • Jalilvand, M. M., Y. Mazaheri, A. Heidarpour, and M. Roknian. 2019a. “Development of A356/Al2O3 + SiO2 Surface Hybrid Nanocomposite by Friction Stir Processing.” Surface and Coatings Technology 360: 121–132. doi:10.1016/j.surfcoat.2018.12.126.
  • Jalilvand, M. M., Y. Mazaheri, A. Heidarpour, and M. Roknian. 2019b. “Development of A356/Al 2 O 3 + SiO 2 Surface Hybrid Nanocomposite by Friction Stir Processing.” Surface and Coatings Technology 360: 121–132. doi:10.1016/j.surfcoat.2018.12.126.
  • Jata, K. V., and S. L. Semiatin. 2000. “Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys.” Scripta Materialia 43 (8): 743–749. doi:10.1016/S1359-6462(00)00480-2.
  • Jata, K. V, K. K. Sankaran, and J. J. Ruschau. 2000. “Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451. Metallurgical and materials transactions A 31 (9):2181–2192.
  • John Baruch, L., R. Raju, V. Balasubramanian, A. G. Rao, and I. Dinaharan. 2016. “Influence of Multi-pass Friction Stir Processing on Microstructure and Mechanical Properties of Die Cast Al-7Si-3Cu Aluminum Alloy.” Acta Metallurgica Sinica (English Letters) 29 (5): 431–440. doi:10.1007/s40195-016-0405-2.
  • Ke, L., C. Huang, L. Xing, and K. Huang. 2010. “Al – Ni Intermetallic Composites Produced in Situ by Friction Stir Processing.” Journal of Alloys and Compounds 503 (2): 494–499. doi:10.1016/j.jallcom.2010.05.040.
  • Khan, N. Z., A. N. Siddiquee, Z. A. Khan, and S. K. Shihab. 2015. “Investigations on Tunneling and Kissing Bond Defects in FSW Joints for Dissimilar Aluminum Alloys.” Journal of Alloys and Compounds 648 (August): 360–367. doi:10.1016/j.jallcom.2015.06.246.
  • Khodabakhshi, F., M. Nosko, and A. P. Gerlich. 2018. “Effects of Graphene Nano-platelets (Gnps) on the Microstructural Characteristics and Textural Development of an Al-Mg Alloy during Friction-stir Processing.” Surface and Coatings Technology 335: 288–305. doi:10.1016/j.surfcoat.2017.12.045.
  • Kumar, S., A. Kumar, and C. Vanitha. 2019. “Corrosion Behaviour of Al 7075 /Tic Composites Processed through Friction Stir Processing.” Materials Today: Proceedings 15: 21–29. doi:10.1016/j.matpr.2019.05.019.
  • Kurt, A., I. Uygur, and E. Cete. 2011. “Surface Modification of Aluminium by Friction Stir Processing.” Journal of Materials Processing Technology 211 (3): 313–317. doi:10.1016/j.jmatprotec.2010.09.020.
  • Kwon, Y. J., I. Shigematsu, and N. Saito. 2003. “Mechanical Properties of Fine-grained Aluminum Alloy Produced by Friction Stir Process. Scripta materialia 49(8): 785–789. doi:10.1016/S1359-6462(03)00407-X.
  • Lee, C. J., J. C. Huang, and P. J. Hsieh. 2006. “Mg Based Nano-composites Fabricated by Friction Stir Processing.” Scripta Materialia 54 (7): 1415–1420. doi:10.1016/j.scriptamat.2005.11.056.
  • Lee, I. S., P. W. Kao, and N. J. Ho. 2008. “Microstructure and Mechanical Properties of Al-Fe in Situ Nanocomposite Produced by Friction Stir Processing.” Intermetallics 16 (9): 1104–1108. doi:10.1016/j.intermet.2008.06.017.
  • Lim, D. K., T. Shibayanagi, and A. P. Gerlich. 2009. “Synthesis of Multi-walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing.” Material Science Engineering A 507 (1–2): 194–199. doi:10.1016/j.msea.2008.11.067.
  • Lima, E. B. F., Wegener, J., Pyzalla, A.R., Reimers, W. et al. 2003“Dependence of the Microstructure, Residual Stresses and Texture of AA 6013 Friction Stir Welds on the Welding Process.“ Zeitschrift für Metallkunde 94.
  • Lloyd, D. J. 1994. “Particle Reinforced Aluminium and Magnesium Matrix Composites. International materials reviews 39 (1): 1–23.
  • Ma, Z. Y. 2008. “Friction Stir Processing Technology : A Review.” Metallurgical and Materials Transactions A 39 (3): 642–658. doi:10.1007/s11661-007-9459-0.
  • Ma, Z. Y., R. S. Mishra, and M. W. Mahoney. 2002. “Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy. Acta materialia 50: 4419–4430.
  • Mahmoud, E. R. I., M. Takahashi, T. Shibayanagi, and K. Ikeuchi. 2010. “Wear Characteristics of surface-hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing.” Wear 268 (9–10): 1111–1121. doi:10.1016/j.wear.2010.01.005.
  • Malopheyev, S., S. Mironov, V. Kulitskiy, and R. Kaibyshev. 2014. “Author ’ S Accepted Manuscript.” Material Science Engineering A. doi:10.1016/j.msea.2014.11.079.
  • Mandal, N. R. 2001. Aluminium Welding. Elsevier 9781855735972, 1855735970.
  • Mandal, N. R. 2002a. “Experimental Investigation on Deformation and Wear of WC Tool during Friction Stir Welding (FSW) of Stainless Steel.” Woodhead Publishing Limited and Alpha Science International Limited, England 73 (1–4): 479–486.
  • Mandal, N. R. 2002b. “Thermo-mechanical and Metallurgical Aspects in Friction Stir Processing of AZ31 Mg Alloy - A Numerical and Experimental Investigation.” Woodhead Publishing Limited and Alpha Science International Limited, England 213 (2): 279–290.
  • Mandal, N. R. 2002c. “Friction Stir Welding of Austenitic Stainless Steel: A Study on Microstructure and Effect of Parameters on Tensile Strength.” Woodhead Publishing Limited and Alpha Science International Limited, England 2 (4–5): 1388–1397. Elsevier Ltd.
  • McNelley, T. R., S. Swaminathan, and J. Q. Su. 2008. “Recrystallization Mechanisms during Friction Stir Welding/processing of Aluminum Alloys.” Scripta Materialia 58 (5): 349–354. doi:10.1016/j.scriptamat.2007.09.064.
  • Miracle, D. B. 2005. “Metal Matrix Composites - from Science to Technological Significance.” Composites Science and Technology 65 (15–16): 2526–2540. doi:10.1016/j.compscitech.2005.05.027.
  • Mironov, S., Y. S. Sato, and H. Kokawa. 2018. Friction-stir Processing. Nanocrystalline Titanium. Elsevier Inc 55–59. 9780128145999. doi:10.1016/B978-0-12-814599-9.00004-3 .
  • Mishra, R. S., and M. W. Mahoney. 2007. “Friction Stir Welding and Processing.” ASM International 368. doi:10.1361/fswp2007p001.
  • Mishra, R. S., P. S. De, and N. Kumar. 2014. Friction Stir Processing. Friction Stir Welding and Processing: Science and Engineering. 978-3-319-07043-8. doi:10.1007/978-3-319-07043-8_9.
  • Mishra, R. S., and Z. Y. Ma. 2005. “Friction Stir Welding and Processing.” Materials Science and Engineering: R: Reports 50 (1–2): 1–78. doi:10.1016/j.mser.2005.07.001.
  • Mishra, R. S., Z. Y. Ma, and I. Charit. 2003. “Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite.” Material Science Engineering A 341 (1–2): 307–310. doi:10.1016/S0921-5093(02)00199-5.
  • Mohamed, S. S. 2018. “Microstructure and Mechanical Properties of AA2024/Al 2 O 3 Surface Nanocomposites Fabricated Using Friction Stir Processing.” Engineering Research Journal 1 (December): 1–6.
  • Morisada, Y., H. Fujii, T. Nagaoka, K. Nogi, and M. Fukusumi. 2007. “Fullerene/A5083 Composites Fabricated by Material Flow during Friction Stir Processing.” Composite Part A Applied Science Manufacturing 38 (10): 2097–2101. doi:10.1016/j.compositesa.2007.07.004.
  • Morisada, Y., H. Fujii, T. Nagaoka, and M. Fukusumi. 2006. “Effect of Friction Stir Processing with SiC Particles on Microstructure and Hardness of AZ31.“ Materials Science and Engineering: A 433(1–2): 50–54. doi:10.1016/j.msea.2006.06.089.
  • Mostafapour Asl, A., and S. T. Khandani. 2013. “Role of Hybrid Ratio in Microstructural, Mechanical and Sliding Wear Properties of the Al5083/Graphite p/Al 2O 3p a Surface Hybrid Nanocomposite Fabricated via Friction Stir Processing Method.” Material Science Engineering A 559: 549–557. doi:10.1016/j.msea.2012.08.140.
  • Moustafa, E. B., A. Melaibari, and M. Basha. 2020. “Wear and Microhardness Behaviors of AA7075/SiC-BN Hybrid Nanocomposite Surfaces Fabricated by Friction Stir Processing.” Ceramics International 46 (10): 16938–16943. doi:10.1016/j.ceramint.2020.03.274.
  • Moustafa, E. 2017. “Effect of Multi-pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites.” Materials (Basel) 10 (9): 1053. doi:10.3390/ma10091053.
  • Nakata, K., Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki. 2006. “Improvement of Mechanical Properties of Aluminum Die Casting Alloy by Multi-pass Friction Stir Processing.” Material Science Engineering A 437 (2): 274–280. doi:10.1016/j.msea.2006.07.150.
  • Narimani, M., B. Lot, and Z. Sadeghian. 2016. “Surface & Coatings Technology Evaluation of the Microstructure and Wear Behaviour of AA6063-B 4 C/TiB 2 Mono and Hybrid Composite Layers Produced by Friction Stir Processing. Surface and Coatings Technology 285: 1–10. doi:10.1016/j.surfcoat.2015.11.015.
  • Nathan, S. R. 2016. “Effect of Tool Shoulder Diameter on Stir Zone Characteristics of Friction Stir Welded HSLA Steel Joints.” Transactions Indian Institute of Metals. doi:10.1007/s12666-016-0846-3.
  • Nicholas, E. D., and W. M. Thomas. 1998. “A Review of Friction Processes for Aerospace Applications.” International Journal of Materials & Product Technology 13: 45–55.
  • Palanivel, R., I. Dinaharan, R. F. Laubscher, and J. P. Davim. 2016. “Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing.” Materials & Design 106: 195–204. doi:10.1016/j.matdes.2016.05.127.
  • Palanivel, S., P. Nelaturu, B. Glass, and R. S. Mishra. 2015. “Friction Stir Additive Manufacturing for High Structural Performance through Microstructural Control in an Mg Based WE43 Alloy.” Materials & Design (1980-2015) 65: 934–952. doi:10.1016/j.matdes.2014.09.082.
  • Parumandla, N., and K. Adepu. 2020. “Effect of Tool Shoulder Geometry on Fabrication of Al/Al2O3 Surface Nano Composite by Friction Stir Processing.” Particulate Science and Technology 38 (1): 121–130. doi:10.1080/02726351.2018.1490361.
  • Patel, V. V., V. Badheka, and A. Kumar. 2016. “Friction Stir Processing as a Novel Technique to Achieve Superplasticity in Aluminum Alloys: Process Variables, Variants, and Applications.” Metallography, Microstructure, and Analysis 5 (4): 278–293. doi:10.1007/s13632-016-0285-x.
  • Patel, V. V., V. J. Badheka, and A. Kumar. 2017. “Influence of Pin Profile on the Tool Plunge Stage in Friction Stir Processing of Al–Zn–Mg–Cu Alloy.” Transactions of the Indian Institute of Metals 70 (4): 1151–1158. doi:10.1007/s12666-016-0903-y.
  • Qu, J., H. Xu, Z. Feng, D. A. Frederick, L. An, and H. Heinrich. 2011. “Improving the Tribological Characteristics of Aluminum 6061 Alloy by Surface Compositing with Sub-micro-size Ceramic Particles via Friction Stir Processing.” Wear 271 (9–10): 1940–1945. doi:10.1016/j.wear.2010.11.046.
  • Raaft, M., T. S. Mahmoud, H. M. Zakaria, and T. A. Khalifa. 2011. “Microstructural, Mechanical and Wear Behavior of A390/graphite and A390/Al2O3 Surface Composites Fabricated Using FSP.” Material Science Engineering A 528 (18): 5741–5746. doi:10.1016/j.msea.2011.03.097.
  • Rai, R., H. K. D. H. Bhadeshia, and T. Debroy. 2011. “Review : Friction Stir Welding Tools.“ Science and Technology of welding and Joining 16 (4): 325–342. doi:10.1179/1362171811Y.0000000023.
  • Rajan, H. B. M., I. Dinaharan, S. Ramabalan, and E. T. Akinlabi. 2016. “Influence of Friction Stir Processing on Microstructure and Properties of AA7075/TiB2 in Situ Composite.” Journal of Alloys and Compounds 657: 250–260. doi:10.1016/j.jallcom.2015.10.108.
  • Rathee, S., S. Maheshwari, and A. N. Siddiquee 2017. “Issues and Strategies in Composite Fabrication via Friction Stir Processing : A Review “Materials and Manufacturing Processes , 33(3) 262–269. doi:10.1080/10426914.2017.1303162.
  • Rathee, S., S. Maheshwari, A. N. Siddiquee, and M. Srivastava. 2017a. “Effect of Tool Plunge Depth on Reinforcement Particles Distribution in Surface Composite Fabrication via Friction Stir Processing.” Defence Technology 13 (2): 86–91. doi:10.1016/j.dt.2016.11.003.
  • Rathee, S., S. Maheshwari, A. N. Siddiquee, and M. Srivastava. 2017b. “Analysis of Microstructural Changes in Enhancement of Surface Properties in Sheet Forming of Al Alloys via Friction Stir Processing.” Materials Today: Proceedings 4 (2): 452–458. doi:10.1016/j.matpr.2017.01.044.
  • Rathee, S., S. Maheshwari, A. N. Siddiquee, and M. Srivastava. 2017c. “Investigating Effects of Groove Dimensions on Microstructure and Mechanical Properties of AA6063/SiC Surface Composites Produced by Friction Stir Processing.” Transactions of the Indian Institute of Metals 70 (3): 809–816. doi:10.1007/s12666-017-1060-7.
  • Rathee, S., S. Maheshwari, A. N. Siddiquee, and M. Srivastava. 2019. “Investigating the Effects of SiC Particle Sizes on Microstructural and Mechanical Properties of AA5059/SiC Surface Composites during Multi-Pass FSP.” Silicon 11 (2): 797–805. doi:10.1007/s12633-018-9958-1.
  • Rathee, S., S. Maheshwari, A. Noor Siddiquee, M. Srivastava, and S. Kumar Sharma. 2016. “Process Parameters Optimization for Enhanced Microhardness of AA 6061/ SiC Surface Composites Fabricated via Friction Stir Processing (FSP).” Materials Today: Proceedings 3 (10): 4151–4156. doi:10.1016/j.matpr.2016.11.089.
  • Sahraeinejad, S., H. Izadi, M. Haghshenas, and A. P. Gerlich. 2015. “Fabrication of Metal Matrix Composites by Friction Stir Processing with Different Particles and Processing Parameters.” Material Science Engineering A 626: 505–513. doi:10.1016/j.msea.2014.12.077. February.
  • Sarkari Khorrami, M., N. Saito, Y. Miyashita, and M. Kondo. 2018. “Texture Variations and Mechanical Properties of Aluminum during Severe Plastic Deformation and Friction Stir Processing with SiC Nanoparticles.” Material Science Engineering A 744 (October): 349–364. doi:10.1016/j.msea.2018.12.031. 2019.
  • Sathiskumar, R., N. Murugan, I. Dinaharan, and S. J. Vijay. 2013. “Role of Friction Stir Processing Parameters on Microstructure and Microhardness of Boron Carbide Particulate Reinforced Copper Surface Composites.” Sadhana - Academic Proceedings Engineering Science 38 (6): 1433–1450. doi:10.1007/s12046-013-0184-7.
  • Satish Kumar, T., G. Suganya Priyadharshini, S. Shalini, K. Krishna Kumar, and R. Subramanian. 2019. “Characterization of NbC-Reinforced AA7075 Alloy Composites Produced Using Friction Stir Processing.” Transactions of the Indian Institute of Metals 72 (6): 1593–1596. doi:10.1007/s12666-019-01566-7.
  • Sato, Y. S., H. Kokawa, M. Enomoto, and S. Jogan. 1999. “Microstructural Evolution of 6063 Aluminum during Friction-stir Welding.” Metallurgical and Materials Transactions A 30 (9): 2429–2437. doi:10.1007/s11661-999-0251-1.
  • Sato, Y. S., H. Takauchi, S. H. C. Park, and H. Kokawa. 2005. “Characteristics of the Kissing-bond in Friction Stir Welded Al Alloy 1050.” Material Science Engineering A 405 (1–2): 333–338. doi:10.1016/j.msea.2005.06.008.
  • Sato, Y. S., S. H. C. Park, and H. Kokawa. 2001. “Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys.“ Metallurgical and Materials Transactions A 32 (12): 3033–3042.
  • Shafiei-Zarghani, A., S. F. Kashani-Bozorg, and A. Z. Hanzaki. 2011. “Wear Assessment of Al/Al2O3 Nano-composite Surface Layer Produced Using Friction Stir Processing.” Wear 270 (5–6): 403–412. doi:10.1016/j.wear.2010.12.002.
  • Shafiei-Zarghani, A., S. F. Kashani-Bozorg, and A. Zarei-Hanzaki. 2009. “Microstructures and Mechanical Properties of Al/Al2O3 Surface Nano-composite Layer Produced by Friction Stir Processing.” Material Science Engineering A 500 (1–2): 84–91. doi:10.1016/j.msea.2008.09.064.
  • Shahraki, S., S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, and H. Bisadi. 2013. “Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP).” Metallurgical and Materials Transactions B 44 (6) (December): 1546–1553. doi:10.1007/s11663-013-9914-9.
  • Shahraki, S, Khorasani, S , Behnagh, R. A. , Fotouhi, Y., Bisadi, H. 2013. “Producing of AA5083/ZrO 2 Nanocomposite by Friction Stir Processing (FSP).“ Metallurgical and Materials Transactions B 44(6): 1546–1553. doi:10.1007/s11663-013-9914-9
  • Shanmughasundaram, P., and R. Subramanian. 2013. “Influence of Graphite and Machining Parameters on the Surface Roughness of Al-fly Ash/graphite Hybrid Composite: A Taguchi Approach.” Journal of Mechanical Science and Technology 27 (8): 2445–2455. doi:10.1007/s12206-013-0630-9.
  • Sharifitabar, M., A. Sarani, S. Khorshahian, and M. Shafiee Afarani. 2011. “Fabrication of 5052Al/Al2O3 Nanoceramic Particle Reinforced Composite via Friction Stir Processing Route.” Materials & Design 32 (8–9): 4164–4172. doi:10.1016/j.matdes.2011.04.048.
  • Sharma, A., D. Narsimhachary, V. M. Sharma, B. Sahoo, and J. Paul. 2019. “Surface Modification of Al6061-SiC Surface Composite through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study.” Surface and Coatings Technology 368: 175–191. doi:10.1016/j.surfcoat.2019.04.001.
  • Sharma, V., U. Prakash, and B. V. M. Kumar. 2015. “Surface Composites by Friction Stir Processing: A Review.” Journal of Materials Processing Technology 224: 117–134. doi:10.1016/j.jmatprotec.2015.04.019.
  • Sharma, V., Y. Gupta, B. V. M. Kumar, and U. Prakash. 2016. “Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite.” Materials and Manufacturing Processes 31 (10): 1384–1392. doi:10.1080/10426914.2015.1103869.
  • Siddiquee, A. N., and S. Pandey. 2014. “Experimental Investigation on Deformation and Wear of WC Tool during Friction Stir Welding (FSW) of Stainless Steel.” The International Journal of Advanced Manufacturing Technology 73 (1–4): 479–486. doi:10.1007/s00170-014-5846-z.
  • Singh, T., S. K. Tiwari, and D. K. Shukla. 2019. “Fabrication of AA6061-T6/Al 2 O 3 Reinforced Nanocomposite Using Friction Stir Welding.“ American Journal of Materials Synthesis and Processing 4 (1): 23–31. doi:10.11648/j.ajmsp.20190401.13.
  • Srivastava, M., S. Rathee, A. N. Siddiquee, and S. Maheshwari. 2019. “Investigation on the Effects of Silicon Carbide and Cooling Medium during Multi-Pass FSP of Al-Mg/ SiC Surface Composites.” Silicon 11 (4): 2149–2157. doi:10.1007/s12633-018-0037-4.
  • Su, J. Q., T. W. Nelson, and C. J. Sterling. 2005. “Friction Stir Processing of Large-area Bulk UFG Aluminum Alloys.” Scripta Materialia 52 (2): 135–140. doi:10.1016/j.scriptamat.2004.09.014.
  • Sudhakar, I., G. Madhusudhan Reddy, and K. Srinivasa Rao. 2016. “Ballistic Behavior of Boron Carbide Reinforced AA7075 Aluminium Alloy Using Friction Stir Processing – An Experimental Study and Analytical Approach.” Defence Technology 12 (1): 25–31. doi:10.1016/j.dt.2015.04.005.
  • Sudhakar, I., V. Madhu, G. Madhusudhan Reddy, and K. Srinivasa Rao. 2015. “Enhancement of Wear and Ballistic Resistance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing.” Defence Technology 11 (1): 10–17. doi:10.1016/j.dt.2014.08.003.
  • Sudhakar, M., C. H. Srinivasa Rao, and K. M. Saheb. 2018. “Production of Surface Composites by Friction Stir Processing-A Review.” Materials Today: Proceedings 5 (1): 929–935. doi:10.1016/j.matpr.2017.11.167.
  • Suvarna Raju, L., and A. Kumar. 2014. “Influence of Al2O3 Particles on the Microstructure and Mechanical Properties of Copper Surface Composites Fabricated by Friction Stir Processing.” Defense Technology 10 (4): 375–383. doi:10.1016/j.dt.2014.09.001.
  • Taha, M. A., A. H. Nassar, and M. F. Zawrah. 2017. “Improvement of Wetability, Sinterability, Mechanical and Electrical Properties of Al2O3-Ni Nanocomposites Prepared by Mechanical Alloying.” Ceramics International 43 (4): 3576–3582. doi:10.1016/j.ceramint.2016.11.194.
  • Tang, J., Y. Shen, and J. Li. 2019. “Influences of Friction Stir Processing Parameters on Microstructure and Mechanical Properties of SiC/Al Composites Fabricated by Multi-pin Tool.” Journal of Manufacturing Processes 38 (January): 279–289. doi:10.1016/j.jmapro.2019.01.029.
  • Tekoğlu, E., S. Mertdinç, D. Ağaoğulları, and M. L. Öveçoğlu. 2018. “Microstructural and Mechanical Characterization of Al-12. 6 Wt .% Si-2 Wt .% NbB2/NbC Hybrid Composites Fabricated via Mechanical Alloying and Sequential Milling.” Key Engineering Materials 759: 35–39.
  • Thomas, C. J. D. W. M., E. D. Nicholas, J. C. Needham, M.G. Murch, and P. Templesmith, “Improvements to Friction Welding. International Patent Application PCT/GB92/02203 and GB Patent Application No.9125978.8., UK Patent Office, London, 1991,” 1991, doi: 10.1016/j.jallcom.2017.04.309.
  • Threadgill, P. L. 2007. “Terminology in Friction Stir Welding.” Science and Technology of Welding and Joining 12 (4): 357–360. doi:10.1179/174329307X197629.
  • Wang, E., T. Gao, J. Nie, and X. Liu. 2014. “Grain Refinement Limit and Mechanical Properties of 6063 Alloy Inoculated by Al – Ti – C (B) Master Alloys.” Journal of Alloys and Compounds 594: 7–11. doi:10.1016/j.jallcom.2014.01.145.
  • Yadav, D., and R. Bauri. 2011. “Processing, Microstructure and Mechanical Properties of Nickel Particles Embedded Aluminium Matrix Composite.” Material Science Engineering A 528 (3): 1326–1333. doi:10.1016/j.msea.2010.10.035.
  • Zahmatkesh, B., and M. H. Enayati. 2010. “A Novel Approach for Development of Surface Nanocomposite by Friction Stir Processing.” Material Science Engineering A 527 (24–25): 6734–6740. doi:10.1016/j.msea.2010.07.024.
  • Zebarjad, S. M., and S. A. Sajjadi. 2006. “Microstructure Evaluation of Al-Al2O3 Composite Produced by Mechanical Alloying Method.” Materials & Design 27 (8): 684–688. doi:10.1016/j.matdes.2004.12.011.
  • Zhao, X., S. Li, M. Zhang, Y. Liu, T B. Sercombe, S. Wang, Y. Hao, et al. 2016. “Comparison of the Microstructures and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting and Electron Beam Melting.” Materials & Design 95 :21–31. doi:10.1016/j.matdes.2015.12.135.
  • Zhao, Y., X. Huang, Q. Li, J. Huang, and K. Yan. 2015. “Effect of Friction Stir Processing with B4C Particles on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy.” The International Journal of Advanced Manufacturing Technology 78 (9–12): 1437–1443. doi:10.1007/s00170-014-6748-9.
  • Zohoor, M., M. K. Besharati Givi, and P. Salami. 2016. “Effect of Processing Parameters on Fabrication of Al-Mg/Cu Composites via Friction Stir Processing.” Materials & Design 39 (March): 358–365. doi:10.1016/j.matdes.2012.02.042. 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.