141
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Application of statistical and soft computational techniques in machining of Nickel based supper-alloy using cryogenically treated tools for estimation of surface roughness

ORCID Icon, ORCID Icon &
Pages 1604-1623 | Received 05 Jan 2021, Accepted 22 Dec 2021, Published online: 30 Jan 2022

References

  • Akhbarizadeh, A., A. Shafyei, and M.A. Golozar. 2009. “Effects of Cryogenic Treatment on Wear Behavior of D6 Tool Steel.” Materials & Design 30 (8): 3259–3264. doi:10.1016/j.matdes.2008.11.016.
  • Arslan, Y.Y., Jazdzewska A.A. Uygur II, and A. Jazdzewska. 2015. “The Effect of Cryogenic Treatment on Microstructure and Mechanical Response of Aisi D3 Tool Steel Punches.” ASME. J. Manuf. Sci. Eng 137 (3). doi:10.1115/1.4029567.
  • Arunachalam, R.M., M.A. Mannan, and A.C. Spowage. 2004. “Surface Integrity When Machining Age Hardened Inconel 718 with Coated Carbide Cutting Tools.” International Journal of Machine Tools and Manufacture 44 (14): 1481–1491. doi:10.1016/j.ijmachtools.2004.05.005.
  • Asiltürk, I., and M. Çunkaş. 2011. “Modeling and Prediction of Surface Roughness in Turning Operations Using Artificial Neural Network and Multiple Regression Method.” Expert Systems with Applications 38 (5): 5826–5832. doi:10.1016/j.eswa.2010.11.041.
  • Attanasio, A.A., E.E Ceretti, C.C. Giardini, and C.C. Cappellini. 2013. “Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models.” ASME. J. Manuf. Sci. Eng 135 (5). doi:10.1115/1.4025010.
  • Barenblatt, G.I. 1987. Dimensional Analysis. New York: Gordon and Breach Science Publishers’. Trans. Paul Makinen.
  • Bhardwaj, B., R. Kumar, and P.K. Singh. 2014. “Prediction of Surface Roughness in Turning of EN 353 Using Response Surface Methodology.” Transactions of the Indian Institute of Metals 67 (3): 305–313. doi:10.1007/s12666-013-0346-7.
  • Blau, P.J. 2008. Friction Science and Technology: From Concepts to Applications. Boca Raton: CRC press.
  • Bobbili, R., V. Madhu, and A.K. Gogia. 2015. “Modelling and Analysis of Material Removal Rate and Surface Roughness in Wire-cut EDM of Armour Materials.” Engineering Science and Technology, an International Journal 18 (4): 664–668. doi:10.1016/j.jestch.2015.03.014.
  • Cantero, J.L., J. Díaz-Álvarez, M.H. Miguélez, and N.C. Marín. 2013. “‘Analysis of Tool Wear Patterns in Finishing Turning of Inconel 718ʹ.” Wear 297 (1–2): 885–894. doi:10.1016/j.wear.2012.11.004.
  • Chavoshi, S.Z., and M. Tajdari. 2010. “Surface Roughness Modelling in Hard Turning Operation of AISI 4140 Using CBN Cutting Tool.” International Journal of Material Forming 3 (4): 233–239. doi:10.1007/s12289-009-0679-2.
  • Cica, D., B. Sredanovic, and D. Kramar. 2015. “Modelling of Tool Life and Surface Roughness in Hard Turning Using Soft Computing Techniques: A Comparative Study.” International Journal of Materials and Product Technology 50 (1): 49–64. doi:10.1504/IJMPT.2015.066866.
  • Çiçek, A., I. Uygur, T. Kıvak, and Altan Özbek N. 2012. “Machinability of Aisi 316 Austenitic Stainless Steel with Cryogenically Treated M35 High-speed Steel Twist Drills.” ASME. J. Manuf. Sci. Eng 134 (6). doi:10.1115/1.4007620.
  • Darwish, S.M. 2000. “The Impact of the Tool Material and the Cutting Parameters on Surface Roughness of Supermet 718 Nickel Superalloy.” Journal of Materials Processing Technology 97 (1–3): 10–18. doi:10.1016/S0924-0136(99)00365-9.
  • Davoodi, B., and A.H. Tazehkandi. 2014. “Cutting Forces and Surface Roughness in Wet Machining of Inconel Alloy 738 with Coated Carbide Tool.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(2). 0954405414542990.
  • Debnath, S., M.M. Reddy, and Q.S. Yi. 2014. “Environmental Friendly Cutting Fluids and Cooling Techniques in Machining: A Review.” Journal of Cleaner Production 83: 33–47. doi:10.1016/j.jclepro.2014.07.071.
  • Deshpande, Y. V., A. B. Andhare, and P. M. Padole. 2021. “Performance Appraisal of Cryogenically Treated Tool in Dry, MQL and Cryogenic Machining of Inconel 718.” In Kalamkar, V. R., and Monkova, K. Advances in Mechanical Engineering, 687–693. Singapore: Springer.
  • Deshpande, Y., A. Andhare, and N.K. Sahu. 2017. “‘Estimation of Surface Roughness Using Cutting Parameters, Force, Sound, and Vibration in Turning of Inconel 718ʹ.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (12): 5087–5096. doi:10.1007/s40430-017-0819-4.
  • Deshpande, Y., A.B. Andhare, and P.M. Padole. 2018a. “How Cryogenic Techniques Help in Machining of Nickel of Nickel Alloys? A Review.” Machining Science and Technology 22 (4): 543–584. doi:10.1080/10910344.2017.1382512.
  • Deshpande, Y, A Andhare, and P Padole. 2018c. “Experimental Results on the Performance of Cryogenic Treatment of Tool and Minimum Quantity Lubrication for Machinability Improvement in the Turning of Inconel 718.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (1): 6. doi:10.1007/s40430-017-0920-8.
  • Deshpande, Y, A Andhare, and P Padole. 2019. “Application of ANN to Estimate Surface Roughness Using Cutting Parameters, Force, Sound and Vibration in Turning of Inconel 718.” SN Applied Sciences 1 (1): 104. doi:10.1007/s42452-018-0098-4.
  • Deshpande, Y, A Andhare, P Padole, and N Sahu. 2018b. “Application of Advanced Algorithms for Enhancement in Machining Performance of Inconel 718.” Indian J Eng Mater Sci 25: 366–376.
  • Devillez, A., G. Le Coz, S. Dominiak, and D. Dudzinski. 2011. “Dry Machining of Inconel 718, Workpiece Surface Integrity.” Journal of Materials Processing Technology 211 (10): 1590–1598. doi:10.1016/j.jmatprotec.2011.04.011.
  • Dongre, G., R. Singh, and S.S. Joshi. 2012. “Response Surface Analysis of Slicing of Silicon Ingots with Focus on Photovoltaic Application.” Machining Science and Technology 16 (4): 624–652. doi:10.1080/10910344.2012.731952.
  • Ezilarasan, C., V.S.S. Kumar, A. Velayudham, and K. Palanikumar. 2011. “Modeling and Analysis of Surface Roughness on Machining of Nimonic C-263 Alloy by PVD Coated Carbide Insert.” Transactions of Nonferrous Metals Society of China 21 (9): 1986–1994. doi:10.1016/S1003-6326(11)60961-8.
  • Ezugwu, E.O. 2005. “Key Improvements in the Machining of Difficult-to-cut Aerospace Superalloys.” International Journal of Machine Tools and Manufacture 45 (12–13): 1353–1367. doi:10.1016/j.ijmachtools.2005.02.003.
  • Fang, X.D., and H. Safi-Jahanshahi. 1997. “A New Algorithm for Developing A Reference-based Model for Predicting Surface Roughness in Finish Machining of Steels.” International Journal of Production Research 35 (1): 179–199. doi:10.1080/002075497196046.
  • Gallagher, A.H., C.D. Agosti, and J.T. Roth. 2005. “Effect of Cryogenic Treatments on Tungsten Carbide Tool Life: Microstructural Analysis.” Transactions of the North American Manufacturing Research Institute of SME 33: 153–160.
  • Gekonde, H.O., and S. Subramanian. 2002. “Tribology of Tool–chip Interface and Tool Wear Mechanisms.” Surface and Coatings Technology 149 (2–3): 151–160. doi:10.1016/S0257-8972(01)01488-8.
  • Gill, S.S., J. Singh, H. Singh, and R. Singh. 2011. “Investigation on Wear Behaviour of Cryogenically Treated TiAlN Coated Tungsten Carbide Inserts in Turning.” International Journal of Machine Tools and Manufacture 51 (1): 25–33. doi:10.1016/j.ijmachtools.2010.10.003.
  • Gill, S.S., J. Singh, H. Singh, and R. Singh. 2012. “Metallurgical and Mechanical Characteristics of Cryogenically Treated Tungsten Carbide (Wc–co).” The International Journal of Advanced Manufacturing Technology 58 (1–4): 119–131. doi:10.1007/s00170-011-3369-4.
  • Girma, B., S.S. Joshi, M. Raghuram, and R. Balasubramaniam. 2006. “An Experimental Analysis of Magnetic Abrasives Finishing of Plane Surfaces.” Machining Science and Technology 10 (3): 323–340. doi:10.1080/10910340600902140.
  • Hagan, M.T., and M.B. Menhaj. 1994. “Training Feedforward Networks with the Marquardt Algorithm.” IEEE Transactions on Neural Networks 5 (6): 989–993. doi:10.1109/72.329697.
  • Huang, J. Y., Y. T. Zhu, X. Z. Liao, I. J. Beyerlein, M. A. Bourke, and T. E. Mitchell. 2003. “Microstructure of Cryogenic Treated M2 Tool Steel.” Materials Science and Engineering: A 339 (1–2): 241–244. doi:10.1016/S0921-5093(02)00165-X.
  • Jimbert, P., M. Iturrondobeitia, J. Ibarretxe, and R. Fernandez-Martinez. 2018. “Influence of Cryogenic Treatment on Wear Resistance and Microstructure of AISI A8 Tool Steel.” Metals 8 (12): 1038. doi:10.3390/met8121038.
  • Karayel, D. 2009. “Prediction and Control of Surface Roughness in CNC Lathe Using Artificial Neural Network.” Journal of Materials Processing Technology 209 (7): 3125–3137. doi:10.1016/j.jmatprotec.2008.07.023.
  • Karkalos, N.E., N.I. Galanis, and A.P. Markopoulos. 2016. “Surface Roughness Prediction for the Milling of Ti–6Al–4V ELI Alloy with the Use of Statistical and Soft Computing Techniques.” Measurement 90: 25–35. doi:10.1016/j.measurement.2016.04.039.
  • Kenda, J., F. Pusavec, and J. Kopac. 2011. “‘Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based alloy—Inconel 718ʹ.” ASME. J. Manuf. Sci. Eng 133 (4). doi:10.1115/1.4004610.
  • Kermanshahi, B., and H. Iwamiya. 2002. “Up to Year 2020 Load Forecasting Using Neural Nets.” International Journal of Electrical Power & Energy Systems 24 (9): 789–797. doi:10.1016/S0142-0615(01)00086-2.
  • Khan, Z.A., S.K. Shihab, and A.N. Siddiquee. 2015. “Analysis of Chip Morphology in Dry Hard Turning of AISI 52100 Alloy Steel Using RSM.” International Journal of Machining and Machinability of Materials 17 (6): 481–506. doi:10.1504/IJMMM.2015.073720.
  • Kumar, S., R. Singh, A. Batish, and T.P. Singh (2015). “Modeling the Tool Wear Rate in Powder Mixed Electro-discharge Machining of Titanium Alloys Using Dimensional Analysis of Cryogenically Treated Electrodes and Workpiece.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pp.0954408915593875.
  • Lu, X., F. Wang, X. Wang, Y. Lu, and L. Si. 2017. “‘A Surface Roughness Prediction Model Using Response Surface Methodology in Micro-milling Inconel 718ʹ.” International Journal of Machining and Machinability of Materials 19 (3): 230–245. doi:10.1504/IJMMM.2017.084006.
  • Madankar, A., P. Dumbhare, Y. V. Deshpande, A. B. Andhare, and P. S. Barve. 2021. “Estimation and Control of Surface Quality and Traverse Speed in Abrasive Water Jet Machining of AISI 1030 Steel Using Different Work-piece Thicknesses by RSM.” Australian Journal of Mechanical Engineering 1–8. doi:10.1080/14484846.2021.1876600.
  • Markos, S., Z.J. Viharos, and L. Monostori “Quality-oriented, Comprehensive Modelling of Machining Processes.” Sixth ISMQC IMEKO symposium on metrology for quality control in production, Vienna, Austria, 1998. 67–74.
  • Matsumoto, Y., F. Hashimoto, and G. Lahoti. 1999. “Surface Integrity Generated by Precision Hard Turning.” CIRP Annals-Manufacturing Technology 48 (1): 59–62. doi:10.1016/S0007-8506(07)63131-X.
  • Mia, M., and N.R. Dhar. 2016. “Prediction of Surface Roughness in Hard Turning under High Pressure Coolant Using Artificial Neural Network.” Measurement 92: 464–474. doi:10.1016/j.measurement.2016.06.048.
  • Miragliotta, G. 2011. “The Power of Dimensional Analysis in Production Systems Design.” International Journal of Production Economics 131 (1): 175–182. doi:10.1016/j.ijpe.2010.08.009.
  • Myers, R.H., D.C. Montgomery, and C.M. Anderson-Cook. 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. United States of America: John Wiley & Sons.
  • Olovsjö, S., P. Hammersberg, P. Avdovic, J.-E. Ståhl, and L. Nyborg. 2012. “‘Methodology for Evaluating Effects of Material Characteristics on Machinability—theory and Statistics-based Modelling Applied on Alloy 718ʹ.” The International Journal of Advanced Manufacturing Technology 59 (1–4): 55–66. doi:10.1007/s00170-011-3503-3.
  • Özel, T., and Y. Karpat. 2005. “Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks.” International Journal of Machine Tools and Manufacture 45 (4–5): 467–479. doi:10.1016/j.ijmachtools.2004.09.007.
  • Patil, N.G., and P.K. Brahmankar. 2010. “Determination of Material Removal Rate in Wire Electro-discharge Machining of Metal Matrix Composites Using Dimensional Analysis.” The International Journal of Advanced Manufacturing Technology 51 (5–8): 599–610. doi:10.1007/s00170-010-2633-3.
  • Pawade, R.S., S.S. Joshi, and P.K. Brahmankar. 2008. “‘Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-speed Turned Inconel 718ʹ.” International Journal of Machine Tools and Manufacture 48 (1): 15–28. doi:10.1016/j.ijmachtools.2007.08.004.
  • Pollock, T.M., and S. Tin. 2006. “Nickel-based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties.” Journal of Propulsion and Power 22 (2): 361–374. doi:10.2514/1.18239.
  • Pontes, F.J., M.B. Silva, J.R. Ferreira, A.P.D. Paiva, P.P. Balestrassi, and G.B. Schönhorst. 2010. “A DOE Based Approach for the Design of RBF Artificial Neural Networks Applied to Prediction of Surface Roughness in AISI 52100 Hardened Steel Turning.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 32 (SPE): 503–510. doi:10.1590/S1678-58782010000500010.
  • Pusavec, F., A. Deshpande, S. Yang, R. M’saoubi, J. Kopac, O.W. Dillon Jr, and I.S. Jawahir. 2014. “Sustainable Machining of High Temperature Nickel Alloy – Inconel 718: Part 1 – Predictive Performance Models.” Journal of Cleaner Production 81: 255–269. doi:10.1016/j.jclepro.2014.06.040.
  • Pusavec, F., A. Deshpande, S. Yang, R. M’saoubi, J. Kopac, O.W. Dillon, and I. Jawahir. 2015. “Sustainable Machining of High Temperature Nickel alloy–Inconel 718: Part 2–chip Breakability and Optimization.” Journal of Cleaner Production 87: 941–952. doi:10.1016/j.jclepro.2014.10.085.
  • Rathod, P., S. Aravindan, and V.R. Paruchuri. 2015. “Evaluating the Effectiveness of the Novel Surface Textured Tools in Enhancing the Machinability of Titanium Alloy (Ti6al4v).” Journal of Advanced Mechanical Design, Systems, and Manufacturing 9 (3): JAMDSM0035–JAMDSM0035. doi:10.1299/jamdsm.2015jamdsm0035.
  • Reddy, T.S., T. Sornakumar, M.V. Reddy, R. Venkatram, and A. Senthilkumar. 2009. “Turning Studies of Deep Cryogenic Treated P-40 Tungsten Carbide Cutting Tool inserts–Technical Communication.” Machining Science and Technology 13 (2): 269–281. doi:10.1080/10910340902979754.
  • Risbood, K.A., U.S. Dixit, and A.D. Sahasrabudhe. 2003. “Prediction of Surface Roughness and Dimensional Deviation by Measuring Cutting Forces and Vibrations in Turning Process.” Journal of Materials Processing Technology 132 (1–3): 203–214. doi:10.1016/S0924-0136(02)00920-2.
  • Shandilya, P., P. Jain, and N. Jain. 2016. “Modelling and Process Optimisation for Wire Electric Discharge Machining of Metal Matrix Composites.” International Journal of Machining and Machinability of Materials 18 (4): 377–391. doi:10.1504/IJMMM.2016.077713.
  • Shanmugam, D.K., J. Wang, and H. Liu. 2008. “Minimisation of Kerf Tapers in Abrasive Waterjet Machining of Alumina Ceramics Using a Compensation Technique.” International Journal of Machine Tools and Manufacture 48 (14): 1527–1534. doi:10.1016/j.ijmachtools.2008.07.001.
  • Sharman, A.R.C., J.I. Hughes, and K. Ridgway. 2006. “An Analysis of the Residual Stresses Generated in Inconel 718™ When Turning.” Journal of Materials Processing Technology 173 (3): 359–367. doi:10.1016/j.jmatprotec.2005.12.007.
  • Taylor, E.S. 1974. Dimensional Analysis for Engineers. Oxford: Clarendon Press.
  • Thakur, D., B. Ramamoorthy, and L. Vijayaraghavan. 2012a. “Some Investigations on High Speed Dry Machining of Aerospace Material Inconel 718 Using Multicoated Carbide Inserts.” Materials and Manufacturing Processes 27 (10): 1066–1072. doi:10.1080/10426914.2011.654158.
  • Thakur, D.G., B. Ramamoorthy, and L. Vijayaraghavan. 2012b. “‘Effect of Cutting Parameters on the Degree of Work Hardening and Tool Life during High-speed Machining of Inconel 718ʹ.” The International Journal of Advanced Manufacturing Technology 59 (5–8): 483–489. doi:10.1007/s00170-011-3529-6.
  • Thiele, J.D., and S.N. Melkote. 1999. “Effect of Cutting Edge Geometry and Workpiece Hardness on Surface Generation in the Finish Hard Turning of AISI 52100 Steel.” Journal of Materials Processing Technology 94 (2–3): 216–226. doi:10.1016/S0924-0136(99)00111-9.
  • Tsai, K.-M., and P.-J. Wang. 2001. “Semi-empirical Model of Surface Finish on Electrical Discharge Machining.” International Journal of Machine Tools and Manufacture 41 (10): 1455–1477. doi:10.1016/S0890-6955(01)00015-3.
  • Ulutan, D., and T. Ozel. 2011. “Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review.” International Journal of Machine Tools and Manufacture 51 (3): 250–280. doi:10.1016/j.ijmachtools.2010.11.003.
  • Upadhyay, V., P.K. Jain, and N.K. Mehta. 2013. “In-process Prediction of Surface Roughness in Turning of Ti–6Al–4V Alloy Using Cutting Parameters and Vibration Signals.” Measurement 46 (1): 154–160. doi:10.1016/j.measurement.2012.06.002.
  • Vyas, A., and M.C. Shaw. 1997. “Chip Formation When Hard Turning Steel.” Manufacturing Science and Technology 2: 21–28.
  • Wang, H., and D. Li. 2002. “Surface Roughness Prediction Model for Ultraprecision Turning Aluminium Alloy with a Single Crystal Diamond Tool.” Chinese Journal of Mechanical Engineering(English Edition) 15 (2): 153–156.
  • Whitehouse, D.J. 1994. Handbook of Surface Metrology. Philadelphia PA: Taylor & Francis.
  • Zhou, J., V. Bushlya, P. Avdovic, and J.E. Ståhl. 2012. “Study of Surface Quality in High Speed Turning of Inconel 718 with Uncoated and Coated CBN Tools.” The International Journal of Advanced Manufacturing Technology 58 (1–4): 141–151. doi:10.1007/s00170-011-3374-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.