191
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Performance investigation of an ejector expansion refrigeration system working on different alternative refrigerants to R134a

, &
Pages 1806-1817 | Received 03 Sep 2021, Accepted 12 Jan 2022, Published online: 27 Jan 2022

References

  • Al-Chlaihawi, K. K. I., and K. Al-Farhany. 2021. “A Comprehensive Energetic and Exergetic Analysis of an Ejector Expansion Refrigeration Cycle Using R22 and R410A.” International Journal of Air-Conditioning and Refrigeration 29 (2): 2150013. doi:10.1142/S2010132521500139.
  • Alhendal, Y., A. Gomaa, G. Bedair, A. Kalendar. 2020. “Thermal Performance Analysis of Low-GWP Refrigerants in Automotive Air-Conditioning System”. Advances in Materials Science and Engineering 2020: 1–14. doi:10.1155/2020/7967812.
  • Bolaji, B. O., A E. Adeleke, M R. Adu, M U. Olanipekun, E. Akinnibosun. 2019. “Theoretical Investigation of Energy-saving Potential of Eco-friendly R430A, R440A and R450A Refrigerants in a Domestic Refrigerator.” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43 (1): 103–112. doi:10.1007/s40997-017-0110-4.
  • Bolaji, B. O., and Z. Huan. 2012, August. “Energy Performance of Eco-friendly RE170 and R510A Refrigerants as Alternatives to R134a in Vapour Compression Refrigeration System.” 2012 Proceedings of the 9th Industrial and Commercial Use of Energy Conference, 1–8. IEEE.
  • Brunin, O., M Feidt, B Hivet. 1997. “Comparison of the Working Domains of Some Compression Heat Pumps and a Compression-absorption Heat Pump.” International Journal of Refrigeration 20 (5): 308–318. doi:10.1016/S0140-7007(97)00025-X.
  • Chen, Q., G. Yan, J. Yu. 2017. “Performance Analysis of an Ejector Enhanced Refrigeration Cycle with R290/R600a for Application in Domestic Refrigerator/freezers”. Applied Thermal Engineering 120: 581–592. doi:10.1016/j.applthermaleng.2017.04.027.
  • Devecioğlu, A. G., and V. Oruç. 2017. “An Analysis on the Comparison of low-GWP Refrigerants to Alternatively Use in Mobile Air-conditioning Systems.” Thermal Science and Engineering Progress 1: 1–5. doi:10.1016/j.tsep.2017.02.002.
  • Elgendy, E. 2013. “Parametric Study of a Vapor Compression Refrigeration Cycle Using a Two-phase Constant Area Ejector.” International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering 7 (8): 1–7.
  • El-Sayed, A. R., M. El Morsi, N A. Mahmoud. 2018. “A Review of the Potential Replacements of HCFC/HFCs Using Environment-friendly Refrigerants.” International Journal of Air-Conditioning and Refrigeration 26 (3): 1830002. doi:10.1142/S2010132518300021.
  • Ersoy, H. K., and N. Bilir. 2010. “The Influence of Ejector Component Efficiencies on Performance of Ejector Expander Refrigeration Cycle and Exergy Analysis.” International Journal of Exergy 7 (4): 425–438. doi:10.1504/IJEX.2010.033412.
  • Ersoy, H. K., and N. B. Sag. 2014. “Preliminary Experimental Results on the R134a Refrigeration System Using a Two-phase Ejector as an Expander.” International Journal of Refrigeration 43: 97–110. doi:10.1016/j.ijrefrig.2014.04.006.
  • Hamza, A., and T. A. Khan. 2020. “Comparative Performance of Low-GWP Refrigerants as Substitutes for R134a in a Vapor Compression Refrigeration System.” Arabian Journal for Science and Engineering 1–16.
  • Hassanain, M., E. Elgendy, M. Fatouh. 2015. “Ejector Expansion Refrigeration System: Ejector Design and Performance Evaluation”. International Journal of Refrigeration 58: 1–13. doi:10.1016/j.ijrefrig.2015.05.018.
  • Heredia-Aricapa, Y., J.M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, J J. García-Pabón. 2020. “Overview of Low GWP Mixtures for the Replacement of HFC Refrigerants: R134a, R404A and R410A”. International Journal of Refrigeration 111: 113–123. doi:10.1016/j.ijrefrig.2019.11.012.
  • Kumar, V., and G. Sachdeva. 2019. “Experimental Investigation of Ejector-Assisted Vapor Compression System.” International Journal of Air-Conditioning and Refrigeration 27 (3): 1950029. doi:10.1142/S2010132519500299.
  • Li, H., F. Cao, X. Bu, L. Wang, X. Wang. 2014. “Performance Characteristics of R1234yf Ejector-expansion Refrigeration Cycle”. Applied Energy 121: 96–103. doi:10.1016/j.apenergy.2014.01.079.
  • Li, Z., H. Jiang, X. Chen, K. Liang. 2019. “Comparative Study on Energy Efficiency of Low GWP Refrigerants in Domestic Refrigerators with Capacity Modulation”. Energy and Buildings 192: 93–100. doi:10.1016/j.enbuild.2019.03.031.
  • Liu, X., J. Yu, G. Yan. 2015. “Theoretical Investigation on an Ejector–expansion Refrigeration Cycle Using Zeotropic Mixture R290/R600a for Applications in Domestic Refrigerator/freezers”. Applied Thermal Engineering 90: 703–710. doi:10.1016/j.applthermaleng.2015.07.069.
  • Rasti, M., S. Aghamiri, M-S. Hatamipour. 2013. “Energy Efficiency Enhancement of a Domestic Refrigerator Using R436A and R600a as Alternative Refrigerants to R134a”. International Journal of Thermal Sciences 74: 86–94. doi:10.1016/j.ijthermalsci.2013.07.009.
  • Sag, N. B., H.K. Ersoy, A. Hepbasli, H.S. Halkaci. 2015. “Energetic and Exergetic Comparison of Basic and Ejector Expander Refrigeration Systems Operating under the Same External Conditions and Cooling Capacities”. Energy Conversion and Management 90: 184–194. doi:10.1016/j.enconman.2014.11.023.
  • Salhi, K., Ramadan K.M., Hadjiat M.M., Hamidat A. 2020. “Energetic and Exergetic Performance of Solar-Assisted Direct Expansion Air-Conditioning System with Low-GWP Refrigerants in Different Climate Locations.” Arabian Journal for Science and Engineering 45: 1–14.
  • Sánchez, D., R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, E. Torrella. 2017. “Energy Performance Evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a Alternatives”. International Journal of Refrigeration 74: 269–282. doi:10.1016/j.ijrefrig.2016.09.020.
  • Saravanakumar, R., and V. Selladurai. 2014. “Exergy Analysis of a Domestic Refrigerator Using Eco-friendly R290/R600a Refrigerant Mixture as an Alternative to R134a.” Journal of Thermal Analysis and Calorimetry 115 (1): 933–940. doi:10.1007/s10973-013-3264-3.
  • Sarkar, J. 2010. “Geometric Parameter Optimization of Ejector‐expansion Refrigeration Cycle with Natural Refrigerants.” International Journal of Energy Research 34 (1): 84–94. doi:10.1002/er.1558.
  • Sarkar, J. 2012. “Ejector Enhanced Vapor Compression Refrigeration and Heat Pump systems—A Review.” Renewable and Sustainable Energy Reviews 16 (9): 6647–6659. doi:10.1016/j.rser.2012.08.007.
  • Takleh, H. R., and V Zare. 2019. “Performance Improvement of Ejector Expansion Refrigeration Cycles Employing a Booster Compressor Using Different Refrigerants: Thermodynamic Analysis and Optimization.” International Journal of Refrigeration 101: 56–70. doi:10.1016/j.ijrefrig.2019.02.031.
  • Tashtoush, B., and M. B Younes. 2019. “Comparative Thermodynamic Study of Refrigerants to Select the Best Environment-friendly Refrigerant for Use in a Solar Ejector Cooling System.” Arabian Journal for Science and Engineering 44 (2): 1165–1184. doi:10.1007/s13369-018-3427-4.
  • Tashtoush, B. M., M A. Al-Nimr, M A. Khasawneh. 2017. “Investigation of the Use of Nano-refrigerants to Enhance the Performance of an Ejector Refrigeration System”. Applied Energy 206: 1446–1463. doi:10.1016/j.apenergy.2017.09.117.
  • Tashtoush, B. M., M A. Al-Nimr, M A. Khasawneh. 2019. “A Comprehensive Review of Ejector Design, Performance, and Applications”. Applied Energy 240: 138–172. doi:10.1016/j.apenergy.2019.01.185.
  • Wang, F., D.Y. Li, Y. Zhou. 2016. “Analysis for the Ejector Used as Expansion Valve in Vapor Compression Refrigeration Cycle”. Applied Thermal Engineering 96: 576–582. doi:10.1016/j.applthermaleng.2015.11.095.
  • Wang, X., and J. Yu. 2016. “An Investigation on the Component Efficiencies of a Small Two-phase Ejector.” International Journal of Refrigeration 71: 26–38. doi:10.1016/j.ijrefrig.2016.08.006.
  • Yan, G., J. Chen, J. Yu. 2015. “Energy and Exergy Analysis of a New Ejector Enhanced Auto-cascade Refrigeration Cycle”. Energy Conversion and Management 105: 509–517. doi:10.1016/j.enconman.2015.07.087.
  • Yataganbaba, A., A. Kilicarslan, İ. Kurtbaş. 2015. “Exergy Analysis of R1234yf and R1234ze as R134a Replacements in a Two Evaporator Vapour Compression Refrigeration System”. International Journal of Refrigeration 60: 26–37. doi:10.1016/j.ijrefrig.2015.08.010.
  • Yilmaz, T., and M. T. Erdinç. 2019. “Energetic and Exergetic Investigation of a Novel Refrigeration System Utilizing Ejector Integrated Subcooling Using Different Refrigerants.” Energy 168: 712–727. doi:10.1016/j.energy.2018.11.081.
  • Zhang, Z., Xu Feng, D. Tian, J. Yang, Li Chang. 2020. “Progress in Ejector-expansion Vapor Compression Refrigeration and Heat Pump Systems”. Energy Conversion and Management 207: 112529. doi:10.1016/j.enconman.2020.112529.
  • Zhang, Z., L. Tong, Li Chang, Y. Chen, X. Wang. 2015. “Energetic and Exergetic Analysis of an Ejector-expansion Refrigeration Cycle Using the Working Fluid R32.” Entropy 17 (12): 4744–4761. doi:10.3390/e17074744.
  • Zhao, L., X. Yang, S. Deng, H. Li, Z. Yu. 2015. “Performance Analysis of the Ejector-expansion Refrigeration Cycle Using Zeotropic Mixtures”. International Journal of Refrigeration 57: 197–207. doi:10.1016/j.ijrefrig.2015.05.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.