122
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of aluminium on microstructure and shape memory effect in Cu-Al-Ag-Mn shape memory alloys

ORCID Icon &
Pages 467-483 | Received 19 Nov 2021, Accepted 21 Jul 2022, Published online: 26 Jul 2022

References

  • Adorno, A. T., A. V. Benedetti, R. A. G. Da Silva, and M. Blanco. 2003. “Influence of the Al Content on the Phase Transformations in Cu-Al-Ag Alloys.” Eclética Química 28 (1): 33–38. doi:10.1590/S0100-46702003000100004.
  • Akhtar, M., A. Khajuria, and R. Bedi. 2020. Effect of Re-normalizing and Re-tempering on Inter-critical Heat Affected Zone(S) of P91B Steel. In Lecture Notes on Multidisciplinary Industrial Engineering, 255–270. Singapore: Springer. doi:10.1007/978-981-15-4619-8_20. ISBN:9789811546181,9789811546198.
  • Al-Humairi, S. N. S. 2019. “Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties.” Intech 13. [Online]. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0A10.1016/j.colsurfa.2011.12.014.
  • Chang, S. H. 2011. “Influence of Chemical Composition on the Damping Characteristics of Cu-Al-Ni Shape Memory Alloys.” Materials Chemistry and Physics 125 (3): 358–363. doi:10.1016/j.matchemphys.2010.09.077.
  • Dasgupta, R. 2014. “A Look into Cu-based Shape Memory Alloys: Present Scenario and Future Prospects.” Journal of Materials Research 29 (16): 1681–1698. doi:10.1557/jmr.2014.189.
  • Dasgupta, R., and Abhishek Pandey. 2019. “Effect of Microstructure on Roll-Ability and Shape Memory Effect in Cu- Based Shape Memory Alloys.” Applied Innovation Research 1 (March): 29–37. doi:10.1051/jp4:2003935.
  • Deniz Çirak, Z., M. Kök, and Y. Aydoğdu. 2018. “The Effect of Chromium Addition on Physical Properties of Cu-Al Based High Temperature Shape Memory Alloy.” Archives of Metallurgy and Materials 63 (4): 1595–1598. doi:10.24425/amm.2018.125082.
  • Firstov, G. S., T. A. Kosorukova, Y. N. Koval, and V. V. Odnosum. 2015. “High Entropy Shape Memory Alloys.” Materials Today: Proceedings 2: S499–S503. doi:10.1016/j.matpr.2015.07.335.
  • Guilemany, J. M., J. Fernández, and R. Franch. 1995. “In Situ X-Ray Studies on New Cu-Al-Ag SMA with Martensitic Transformations Well above 200 °C.” Journal de Physique. IV 05 (C8): C8-979-C8–983. doi:10.1051/jp4/199558979.
  • Guilemany, J. M., J. Fernández, R. Franch, A. V. Benedetti, and A. T. Adorno. 1995. “A New Cu-Based SMA with Extremely High Martensitic Transformation Temperatures.” Journal de Physique. IV 05 (C2): C2-361-C2–365. doi:10.1051/jp4:1995255.
  • Guilemany, J. M., and A. V Benedetti. 1997. “Structural Evolution of Some Cu-Al-Ag Shape Memory Alloys with High Martensitic Transformation Temperatures and Ternary Diagram Corrections, Proceedings of 8th national meeting of the portuguese materials society 1997, Lisbon, Portugal. Portugal: portuguese materials society, 44–50.
  • Guilemany, J. M., J. Fernandez, and X. M. Zhang. 2006. TEM study on the microstructure of Cu–Al–Ag shape memory alloys. Materials Science and Engineering: A 438–440: 726–729. doi:10.1016/j.msea.2006.02.089.
  • Kim, K., D. Kim, K. Park, M. Cho, S. Cho, and H. Kwon. 2019. “Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al-Cu Composite Materials Fabricated by Spark Plasma Sintering.” Materials (Basel) 12 (9): 1–13. doi:10.3390/ma12091546.
  • López, G. A. 2021. “Shape Memory Alloys 2020.” Metals (Basel) 11 (10): 2020–2021. doi:10.3390/met11101618.
  • Magdalena, A. G., A. T. Adorno, T. M. Carvalho, and R. A. G. Silva. 2011. “β Phase Transformations in the Cu-11mass%Al Alloy with Ag Additions.” Journal of Thermal Analysis and Calorimetry 106 (2): 339–342. doi:10.1007/s10973-011-1432-x.
  • Mallik, U. S., and V. Sampath. 2008. “Effect of Alloying on Microstructure and Shape Memory Characteristics of Cu-Al-Mn Shape Memory Alloys.” Materials Science and Engineering A 481–482 (1–2 C): 680–683. doi:10.1016/j.msea.2006.10.212.
  • Mallik, U. S., and V. Sampath. 2015. “Effect of Grain Refinement on Shape Memory Properties of Cu-Al-Mn SMAs.” Advanced Materials Research 1101 (April): 104–107. www.scientific.net/amr.1101.104.
  • Mazzer, E. M., M. R. da Silva, and P. Gargarella. 2022. “Revisiting Cu-based Shape Memory Alloys: Recent Developments and New Perspectives.” Journal of Materials Research 37 (1): 162–182. doi:10.1557/s43578-021-00444-7.
  • Motomura, S., Y. Soejima, T. Miyoshi, T. Hara, T. Omori, R.Kainuma, M. Nishida, et al. 2016. “In Situ Heating SEM Observation of the Bainitic Transformation Process in Cu–17Al–11Mn (At.%) Alloys.” Microscopy 65 (2): 159–168. doi:10.1093/jmicro/dfv363.
  • Oliveira, A. B., E. B. Peixoto, J. G. S. Duque, L. S. Silva, and R. A. G. Silva. 2021. “Bainite Precipitation in a Cu–Al–Mn-Gd Shape Memory Alloy.” Materialia 16 (April): 101101. doi:10.1016/j.mtla.2021.101101.
  • Otsuka, K., and X. Ren. 2005. “Physical Metallurgy of Ti-Ni-based Shape Memory Alloys.” Progress in Materials Science 50 (5): 511–678. doi:10.1016/j.pmatsci.2004.10.001.
  • Planes, A., and E. Obrado. 1998. “Order-disorder Transitions of Cu-Al-Mn shape-memory Alloys.” Physical Review B 58 (21).
  • Porter, DavidA, and K.E., Easterling. 2022. Diffusionless Transformations . Phase Transformations in Metals and Alloys, Fourth Edition. Oxon: CRC Press. ISBN:978-1-003-01180-4. doi:10.1201/9781003011804 .
  • Rafique, M. Y., L. Pan, M Z. Iqbal, H. Qiu, M H. Farooq, Z. Guo, M. Ellahi, et al. 2013. “Fabrication of CoNi Alloy hollow-nanostructured Microspheres for Hydrogen Storage Application.” Journal of Nanoparticle Research 15 (7). doi:10.1007/s11051-013-1768-1.
  • Raju, T. N., and V. Sampath. 2011. “Influence of Aluminium and Iron Contents on the Transformation Temperatures of Cu-Al-Fe Shape Memory Alloys.” Transactions of the Indian Institute of Metals 64 (1–2): 165–168. doi:10.1007/s12666-011-0032-6.
  • Sampath, V. 2006. “Improvement of shape-memory Characteristics and Mechanical Properties of copper-zinc-aluminum shape-memory Alloy with Low Aluminum Content by Grain Refinement.” Materials and Manufacturing Processes 21 (8): 789–795. doi:10.1080/10426910600837756.
  • Sampath, V. 2007. “Effect of Thermal Processing on Microstructure and shape-memory Characteristics of a copper-zinc-aluminum shape-memory Alloy.” Materials and Manufacturing Processes 22 (1): 9–14. doi:10.1080/10407780601015808.
  • Santos, C. M. A., A. T. Adorno, A. Paganotti, C. C. S. Silva, A. B. Oliveira, and R. A. G. Silva. 2017. “Phase Stability in the Cu-9 wt%Al-10 wt%Mn-3 wt%Ag Alloy.” Journal of Physics and Chemistry of Solids 104 (October 2016): 145–151. doi:10.1016/j.jpcs.2017.01.012.
  • Santos, C. M. A., A.T. Adorno, M. Stipcich, A. Cuniberti, J.S. Souza, C.V.X. Bessa, R.A.G. Silva, et al. 2019. “Effects of Ag Presence on Phases Separation and order-disorder Transitions in Cu-xAl-Mn Alloys.” Materials Chemistry and Physics 227 (February): 184–190. doi:10.1016/j.matchemphys.2019.02.016.
  • Sari, U., and I. Aksoy. 2006. “Electron Microscopy Study of 2H and 18R Martensites in Cu-11.92 Wt% Al-3.78 Wt% Ni Shape Memory Alloy.” Journal of Alloys and Compounds 417 (1–2): 138–142. doi:10.1016/j.jallcom.2005.09.049.
  • Sari, U. 2010. “Influences of 2.5wt% Mn Addition on the Microstructure and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys.” International Journal of Minerals, Metallurgy, and Materials 17 (2): 192–198. doi:10.1007/s12613-010-0212-0.
  • Shaw, J. A., C. B. Churchill, and M. A. Iadicola. 2008. “Tips and Tricks for Characterizing Shape Memory Alloy Wire: Part 1-differential Scanning Calorimetry and Basic Phenomena.” Experimental Techniques 32 (5): 55–62. doi:10.1111/j.1747-1567.2008.00410.x.
  • Shivasiddaramaiah, A. G., S. Prashant, S. Y. Manjunath, and U. S. Mallikarjun. 2015. “Microstructure and Shape Memory Effect of Cu-Al-Be-Mn Quaternary Shape Memory Alloys.” Applied Mechanics and Materials 813–814: 213–217. www.scientific.net/amm.813-814.213.
  • Shivasiddaramaiah, A. G., U. S. Mallik, L. Shivaramu, and S. Prashantha. 2016. “Evaluation of Shape Memory Effect and Damping Characteristics of Cu–Al–Be–Mn Shape Memory Alloys.” Perspectives in Science 8: 244–246. doi:10.1016/j.pisc.2016.04.041.
  • Silva, R. A. G., A. T. Adorno, T. M. Carvalho, A. G. Magdalena, and C. M. A. Santos. 2012a. “Precipitation Reaction in alpha-Cu-Al-Ag Alloys.” Reviews Materials 16 (3): 747–753. doi:10.1590/s1517-70762011000300002.
  • Silva, R. A. G., E. S. MacHado, A. T. Adorno, A. G. Magdalena, and T. M. Carvalho. 2012b. “Completeness of b-phase Decomposition Reaction in Cu-Al-Ag Alloys.” Journal of Thermal Analysis and Calorimetry 109 (2): 927–931. doi:10.1007/s10973-011-1815-z.
  • Silva, R. A. G., A. Paganotti, L. Jabase, A. T. Adorno, T. M. Carvalho, and C. M. A. Santos. 2014. “Ag-rich Precipitates Formation in the Cu-11%Al-10%Mn-3%Ag Alloy.” Journal of Alloys and Compounds 615 (S1): S160–S162. doi:10.1016/j.jallcom.2013.11.155.
  • Silva, R. A. G., A. Paganotti, A. T. Adorno, C. M. A. Santos, and T. M. Carvalho. 2015. “Precipitation Hardening in the Cu – 11 Wt .% Al – 10 Wt .% Mn Alloy with Ag Addition.” Journal of Alloys and Compounds 10–13. doi:10.1016/j.jallcom.2014.12.208.
  • Sutou, Y., T. Omori, R. Kainuma, K. Ishida, and N. Ono. 2002. “Enhancement of Superelasticity in Cu-Al-Mn-Ni shape-memory Alloys by Texture Control.” Metallurgical and Materials Transactions A 33 (9): 2817–2824. doi:10.1007/s11661-002-0267-2.
  • Tatar, C., R. Acar, and I. N. Qader. 2020. “Investigation of Thermodynamic and Microstructural Characteristics of NiTiCu Shape Memory Alloys Produced by arc-melting Method.” European Physical Journal Plus 135 (3): 1–11. doi:10.1140/epjp/s13360-020-00288-w.
  • Zak, G., A. C. Kneissl, and G. Zatulskij. 1996. “SHAPE MEMORY EFFECT IN CRYOGENIC Cu-Al-Mn ALLOYS.” Scripta materialia 34 (3): 1996.
  • Zhang, G., et al. 2019. “Effect of Mn on Microstructure and Properties of Cu-12Al Powder Metallurgy Alloy.” Materials Research Express 7 (1): 1–18. doi:10.1088/2053-1591/ab63f8.
  • Zhu, J. J., and K. M. Liew. 2003. “Description of Deformation in Shape Memory Alloys from DO3 Austenite to 18R Martensite by Group Theory.” Acta Materialia 51 (9): 2443–2456. doi:10.1016/S1359-6454(02)00604-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.