131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of uncontrolled burn rice husk ash on engineering properties of cement-admixed fine-grained soil

ORCID Icon &
Pages 176-186 | Received 11 Jun 2019, Accepted 20 Mar 2020, Published online: 30 Apr 2020

References

  • Adylov, G. T., S. A. Faiziev, M. S. Paizullakhanov, S. Mukhsimov, and E. Nodirmatov. 2003. “Silicon Carbide Materials Obtained from Rice Husk.” Technical Physics Letters 29 (3): 221–223. doi:10.1134/1.1565639.
  • Alhassan, M., and A. M. Mustapha. 2007. “Effect of Rice Husk Ash on Cement Stabilized Laterite.” Leonardo Electronic Journal of Practices and Technologies 11: 47–58.
  • Ali, F. H., A. Adnan, and C. K. Choy. 1992. “Geotechnical Properties of a Chemically Stabilized Soil from Malaysia with Rice Husk Ash as an Additive.” Geotechnical and Geological Engineering 10 (2): 117–134. doi:10.1007/BF00881147.
  • ASTM. 2004. Test Method for Shrinkage Factors of Soils by the Mercury Method, D427–04.
  • ASTM. 2007. Standard Test Method for Particle-Size Analysis of Soils, D422–63e2.
  • ASTM. 2011. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, D2435/D2435M-11.
  • ASTM. 2014a. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D854–14.
  • ASTM. 2014b. Standard Test Method for Methylene Blue Index of Clay, C837–09.
  • ASTM. 2016. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, D2166/D2166M-16.
  • ASTM. 2017a. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, D4318–17e1.
  • ASTM. 2017b. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), D2487–17.
  • ASTM. 2019a. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, C618–19.
  • ASTM. 2019b. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, D2216–19.
  • Aziz, M., M. Saleem, and M. Irfan. 2015. “Engineering Behavior of Expansive Soils Treated with Rice Husk Ash.” Geomechanics and Engineering 8 (2): 173–186. doi:10.12989/gae.2015.8.2.173.
  • Basha, E. A., R. Hashim, H. B. Mahmud, and A. S. Muntohar. 2005. “Stabilization of Residual Soil with Rice Husk Ash and Cement.” Construction and Building Materials 19 (6): 448–453. doi:10.1016/j.conbuildmat.2004.08.001.
  • Behaka, L., and W. P. Núñez. 2013. “Effect of Burning Temperature on Alkaline Reactivity of Rice Husk Ash with Lime.” Road Materials and Pavement Design 14 (3): 570–585. doi:10.1080/14680629.2013.779305.
  • Boateng, A. A., and D. A. Skeete. 1990. “Incineration of Rice Hull for Use as a Cementitious Material: The Guyana Experience.” Cement and Concrete Research 20 (5): 795–802. doi:10.1016/0008-8846(90)90013-N.
  • Chew, S. H., A. H. M. Kamruzzaman, and F. H. Lee. 2004. “Physicochemical and Engineering Behavior of Cement Treated Clays.” Journal of Geotechnical and Geoenvironmental Engineering 130 (7): 696–706. doi:10.1061/(ASCE)1090-0241(2004)130:7(696).
  • Davidovits, J. 1991. “Geopolymers: Inorganic Polymeric New Materials.” Journal of Thermal Analysis and Calorimetry 37 (8): 1633–1656. doi:10.1007/BF01912193.
  • Day, R. L. 1990. Pozzolans for Use in Low-cost Housing: A State of the Art Report Prepared For: The International Development Research Center, Ottawa, Canada. International Development Research Centre. Accessed 22 May 2019. https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/5782/49685.pdf?sequence=1
  • Drever, J. I. 1988. The Geochemistry of Natural Waters. Englewood Cliffs: Prentice-Hall.
  • Edward, E., Y. Xi, and R. Corotis. 2007. “The Effect of Rice Husk Ash on Mechanical Properties of Concrete under High Temperatures.” Paper presented at the 18th Engineering Mechanics Division Conference, June 3-6, Blacksburg, Virginia.
  • El-Dakroury, A., and M. S. Gasser. 2008. “Rice Husk Ash (RHA) as Cement Admixture for Immobilization of Liquid Radioactive Waste at Different Temperatures.” Journal of Nuclear Materials 381 (3): 271–277. doi:10.1016/j.jnucmat.2008.08.026.
  • FAO 2019. “Food Outlook-Biannual Report on Global Food Markets.” Accessed 20 May 2019. http://www.fao.org/3/ca4526en/ca4526en.pdf
  • Ganesan, K., K. Rajagopal, and K. Thangavel. 2008. “Rice Husk Ash Blended Cement: Assessment of Optimal Level of Replacement for Strength and Permeability Properties of Concrete.” Construction and Building Materials 22 (8): 1675–1683. doi:10.1016/j.conbuildmat.2007.06.011.
  • Gastaldini, A. L. G., G. C. Isaia, N. S. Gomes, and J. E. K. Sperb. 2007. “Chloride Penetration and Carbonation in Concrete with Rice Husk Ash and Chemical Activators.” Cement and Concrete Composites 29 (3): 176–180. doi:10.1016/j.cemconcomp.2006.11.010.
  • Giaccio, G., G. R. de Sensale, and R. Zerbino. 2007. “Failure Mechanism of Normal and High-strength Concrete with Rice-husk Ash.” Cement and Concrete Composites 29 (7): 566–574. doi:10.1016/j.cemconcomp.2007.04.005.
  • Horpibulsuk, S., N. Miura, H. Koga, and T. S. Nagaraj. 2004. “Analysis of Strength Development in Deep Mixing: A Field Study.” Proceedings of the Institution of Civil Engineers - Ground Improvement 8 (2): 59–68. doi:10.1680/grim.2004.8.2.59.
  • Hossain, M. A., M. H. Rashid, O. U. Laz, and M. M. Rahman. 2011. “Effect of Rice Husk Ash on Concrete.” Paper presented at the WasteSafe 2011 – 2nd International Conference on Solid Waste Management in the Developing Countries, 13-15 February, Khulna, Bangladesh.
  • James, J., and P. K. Pandian. 2016. “Industrial Wastes as Auxiliary Additives to Cement/lime Stabilization of Soils.” Advances in Civil Engineering 2016: 1–17. Article ID 1267391.doi:10.1155/2016/1267391.
  • Jayanthi, P. N., and D. N. Singh. 2016. “Utilization of Sustainable Materials for Soil Stabilization: State-of-the-art.” Advances in Civil Engineering Materials 5 (1): 46–79. doi:10.1520/ACEM20150013.
  • Jongpradist, P., W. Homtragoon, R. Sukkarak, W. Kongkitkul, and P. Jamsawang. 2018. “Efficiency of Rice Husk Ash as Cementitious Material in High-Strength Cement-Admixed Clay.” Advances in Civil Engineering 2018: 1-11. Article ID 8346319. doi:10.1155/2018/8346319.
  • Jongpradist, P., N. Jumlongrach, S. Youwai, and S. Chucheepsakul. 2010. “Influence of Fly Ash on Unconfined Compressive Strength of Cement-admixed Clay at High Water Content.” Journal of Materials in Civil Engineering 22 (1): 49–58. doi:10.1061/(ASCE)0899-1561(2010)22:1(49).
  • Kar, A., I. Ray, A. Unnikrishnan, and J. F. Davalos. 2012. “Estimation of C-S-H and Calcium Hydroxide for Cement Pastes Containing Slag and Silica Fume.” Construction and Building Materials 30: 505–515. doi:10.1016/j.conbuildmat.2011.12.029.
  • Khan, R., A. Jabbar, I. Ahmad, W. Khan, A. N. Khan, and J. Mirza. 2012. “Reduction in Environmental Problems Using Rice-husk Ash in Concrete.” Construction and Building Materials 30: 360–365. doi:10.1016/j.conbuildmat.2011.11.028.
  • Krishnarao, R. V., J. Subrahmanyan, and T. J. Kumar. 2001. “Studies on the Formation of Black Particles in Rice Husk Silica Ash.” Journal of the European Ceramic Society 21 (1): 99–104. doi:10.1016/S0955-2219(00)00170-9.
  • Kuntikana, G., and D. N. Singh. 2017. “Contemporary Issues Related to Utilization of Industrial Byproducts.” Advances in Civil Engineering Materials 6 (1): 444–479. doi:10.1520/ACEM20160050.
  • Le, H. T., S. T. Nguyen, and H. M. Ludwig. 2014. “A Study on High Performance Fine-grained Concrete Containing Rice Husk Ash.” International Journal of Concrete Structures and Materials 8 (4): 301–307. doi:10.1007/s40069-014-0078-z.
  • Li, X., H. Wen, B. Muhunthan, and J. Wang. 2015. “Modeling and Prediction of the Effects of Moisture on the Unconfined Compressive and Tensile Strength of Soils.” Journal of Geotechnical and Geoenvironmental Engineering 141 (7): 1–7. 04015028. doi: 10.1061/(ASCE)GT.1943-5606.0001308.
  • Liu, Y., Y. Su, A. Namdar, G. Zhou, Y. She, and Q. Yang. 2019. “Utilization of Cementitious Material from Residual Rice Husk Ash and Lime in Stabilization of Expansive Soil.” Advances in Civil Engineering 2019: 1–17. Article ID 5205276. doi: 10.1155/2019/5205276.
  • Malhotra, V. M., and P. K. Mehta. 1996. Pozzolanic and Cementitious Material, 191. Amsterdam: Gordon & Breach Publishers.
  • Mccaffrey, R. 2002. “Climate Change and the Cement Industry.” Global Cement and Lime Magazine (Environmental Special Issue) 15: 19.
  • Mehta, P. K. 1983. “Pozzolanic and Cementitious Byproducts as Mineral Admixtures for Concrete-a Critical Review.” Special Publication 79: 1–46.
  • Mehtra, P. K., and K. J. Folliard. 1995. “Rice Husk Ash–a Unique Supplementary Cementing Material: Durability Aspects.” Special Publication 154: 531–542.
  • Metha, P. K. 1978. Siliceous Ashes and Hydraulic Cements Prepared Therefrom, Patent No. 4105459. U.S. Patent Washington, DC: U.S. Patent and Trademark Office.
  • Miura, N., S. Horpibulsuk, and T. S. Nagaraj. 2001. “Engineering Behavior of Cement Stabilized Clay at High Water Content.” Soils and Foundations 41 (5): 33–45. doi:10.3208/sandf.41.5_33.
  • Neville, A. M. 2004. Properties of Concrete. England: Pearson Education Limited.
  • Nizami, M. S. 1993. “Studies on the Synthesis of Wollastonite from Rice Husk Ash and Limestone.” Ph.D. Thesis, Institute of Chemistry, University of the Punjab, Lahore, Pakistan.
  • Osinubi, K. J., V. Bafyau, and A. O. Eberemu. 2009. “Bagasse Ash Stabilization of Lateritic Soil.” In: Yanful E. K. (eds), Appropriate Technologies for Environmental Protection in the Developing World 271–280.doi: 10.1007/978-1-4020-9139-1_26.
  • Rahman, M. A. 1986. “The Potentials of Some Stabilizers for the Use of Lateritic Soil in Construction.” Building and Environment 21 (1): 57–61. doi:10.1016/0360-1323(86)90008-9.
  • Rahman, M. A. 1987. “Effects of Cement-Rice Husk Ash Mixtures on Geotechnical Properties of Lateritic Soils.” Journal of Soils and Foundations 27 (2): 61–65. doi:10.3208/sandf1972.27.2_61.
  • Ribeiro, D., R. Néri, and R. Cardoso. 2016. “Influence of Water Content in the UCS of Soil-Cement Mixtures for Different Cement Dosages.” Procedia Engineering 143: 59–66. doi:10.1016/j.proeng.2016.06.008.
  • Singh, D., R. Kumar., A. Kumar, and R. N. Rai. 2008. “Synthesis and Characterization of Rice Husk Silica, Silica–carbon Composite and H3PO4 Activated Silica.” Ceramica 54 (330): 203–212. doi:10.1590/S0366-69132008000200011.
  • Stroeven, P., and M. Stroeven. 1999. “Assessment of Packing Characteristics by Computer Simulation.” Cement and Concrete Research 29 (8): 1201–1206. doi:10.1016/S0008-8846(99)00020-4.
  • Sugita, S. 1993. “On the Economical Production of Large Quantities of Highly Reactive Rice Husk Ash.” Paper presented at the International Symposium on Innovative World of Concrete (ICI-IWC’93), 2: 3–71.
  • Thuadaij, M., and A. Nuntiya. 2008. “Preparation of Nanosilica Powder from Rice Husk Ash by Precipitation Method.” Chiang Mai Journal of Science 35 (1): 206–211.
  • Van, V.-T.-A., C. Rößler, -D.-D. Bui, and H.-M. Ludwig. 2013. “Mesoporous Structure and Pozzolanic Reactivity of Rice Husk Ash in Cementitious System.” Construction and Building Materials 43: 208–216. doi:10.1016/j.conbuildmat.2013.02.004.
  • Xu, W., T. Y. Lo, W. Wang, D. Ouyang, P. Wang, and F. Xing. 2016. “Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in A Cementitious System: A Comparative Study.” Materials 9 (3): 146. doi:10.3390/ma9030146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.