431
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Identification and mapping of high-potential iron ore alteration zone across Joda, Odisha using ASTER and EO-1 hyperion data

, , , , &

References

  • Aboelkhair, H., et al., 2010. Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albitegranitoids in the Central Eastern Desert of Egypt. Journal of African Earth Sciences, 58 (1), 141–151. doi:10.1016/j.jafrearsci.2010.01.007
  • Acharya, S., 1976. Iron formation and iron ores of Orissa, their stratigraphy and correlation. In: Proceeding of symposium on geological exploring mining mineral processing and metallurgical ferrous and ferroalloy minerals. Bangalore, India: Bangalore University, 86–100.
  • Acharya, S., 2005. Genetic modeling of iron and manganese deposits of the Joda-Koira Iron Ore basin (BIF-3). In: India-its application to exploration. Sem. Proc. Vision Mineral development 2020 organised by SGAT. Bhubaneswar, India: SGAT, 44–67.
  • Acito, N., Dhani, M., and Corsini, G., 2011. Subspace-based striping noise reduction in hyperspectral images. IEEE Transaction on Geoscience and Remote Sensing, 49 (4), 1325–1342. doi:10.1109/TGRS.2010.2081370
  • Adler-Golden, S.M., et al., 1999. Atmospheric correction for short-wave spectral imagery based on MODTRAN 4. In Imaging Spectrometry V. International Society for Optics and Photonics, 3753, 61–70.
  • Ahmed, Z. and Iqbal, J., 2014. Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS. European Journal of Remote Sensing, 47 (1), 557–573. doi:10.5721/EuJRS20144731
  • Amer, R., Kusky, T., and Ghulam, A., 2010. Lithological mapping in the Central Eastern desert of Egypt using ASTER data. Journal of African Earth Sciences, 56 (2), 75–82. doi:10.1016/j.jafrearsci.2009.06.004
  • Banerjee, P.K., 1982. Stratigraphy, petrology, and geochemistry of some Precambrian basic volcanic and associated rocks of Singhbhum District, Bihar, and Mayurbhanj and Keonjhar districts, Orissa. Geological Survey of India, 111, 1–54.
  • Beura, D., et al., 2016. Field relationship among the three iron ore groups of iron ore super group encircling the North Odisha Iron Ore Craton, India: a comparison study. Journal of Geosciences and Geomatics, 4 (3), 53–60.
  • Beura, D. and Singh, P., 2005. Geological setting and mineral deposits of Archaean schist belt-A case study around Badampahar belt, North Orissa, India. In: Proceeding of international seminar, 6–8 September Thailand. Khon Ken, Thailand: Khon Ken University, 326–329.
  • Bhattacharya, S., et al., 2012. Utilization of hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. International Journal of Remote Sensing, 33 (17), 5438–5450. doi:10.1080/01431161.2012.661094
  • Bishop, C.A., Liu, J.G., and Mason, P.J., 2011. Hyperspectral remote sensing for mineral exploration in Pulang Yunnan Province China. International Journal of Remote Sensing, 32 (9), 2409–2426. doi:10.1080/01431161003698336
  • Caccetta, M., Collings, S., and Cudahy, T., 2013. A calibration methodology for continental scale mapping using ASTER imagery. Remote Sensing of Environment, 139, 306–317. doi:10.1016/j.rse.2013.08.011
  • Clark, R.N., 1999. Spectroscopy of rock and minerals and principles of spectroscopy. Manual of Remote Sensing, 3, 3–58.
  • Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37 (1), 35–46. doi:10.1016/0034-4257(91)90048-B
  • Congalton, R.G. and Mead, R.A., 1983. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, 49 (1), 69–74.
  • Cudahy, T.J., et al., 2001. The performance of the satellite-borne Hyperion Hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton, South Australia. In: Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217). Sydney: IEEE, 314–316.
  • Cudahy, T.J., et al., 2002. Regional to prospect scale exploration for porphyry-skarn-epithermal mineralisation at Yerington, Nevada, using ASTER and airborne hyperspectral data. Australia: CSIRO Exploration and Mining Report.
  • Dadon, A., Ben-Dor, E., and Karnieli, A., 2010. Use of derivative calculations and minimum noise fraction transform for detecting and correcting the spectral curvature effect (smile) in Hyperion images. IEEE Transactions on Geoscience and Remote Sensing, 48 (6), 2603–2612. doi:10.1109/TGRS.2010.2040391
  • Deb, M., 2014. Precambrian geodynamics and metallogeny of the Indian shield. Ore Geology Reviews, 57, 1–28. doi:10.1016/j.oregeorev.2013.08.022
  • Ducart, D.F., et al., 2016. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology, 46 (3), 331–349. doi:10.1590/2317-4889201620160023
  • Farifteh, J., Nieuwenhuis, W., and García-Meléndez, E., 2013. Mapping spatial variations of iron oxide by-product minerals from EO-1 hyperion. International Journal of Remote Sensing, 34 (2), 682–699. doi:10.1080/01431161.2012.715776
  • Gabr, S., Ghulam, A., and Kusky, T., 2010. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38 (1), 59–69. doi:10.1016/j.oregeorev.2010.05.007
  • Gad, S. and Kusky, T., 2007. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11 (3), 326–335. doi:10.1016/j.gr.2006.02.010
  • Goodenough, D.G., et al., 2003. Processing hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1321–1331. doi:10.1109/TGRS.2003.813214
  • Green, A.A., et al., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26 (1), 65–74. doi:10.1109/36.3001
  • Hewson, R.D., et al., 2012. Investigations into soil composition and texture using infrared spectroscopy (2–14 m). Applied and Environmental Soil Science, 2012, 1–12. doi:10.1155/2012/535646
  • Hubbard, B.E. and Crowley, J.K., 2005. Mineral mapping on the Chilean–bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: data dimensionality issues and solutions. Remote Sensing of Environment, 99 (1), 173–186. doi:10.1016/j.rse.2005.04.027
  • Hubbard, B.E., Crowley, J.K., and Zimbelman, D.R., 2003. Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4/spl mu/m)) Hyperion ALI, and ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1401–1410. doi:10.1109/TGRS.2003.812906
  • Hunt, G.R. and Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology, 74 (7), 1613–1629. doi:10.2113/gsecongeo.74.7.1613
  • Hunt, G.R. and John, W.S., 1974. Mid-infrared spectral behavior of igneous rocks (No. AFCRL-TR-74-0625). Hanscom AFB, MA: Air Force Cambridge Research Labs.
  • Inzana, J., et al., 2003. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37 (1), 59–72. doi:10.1016/S0899-5362(03)00071-X
  • Iwasaki, A. and Tonooka, H., 2005. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Transactions on Geoscience and Remote Sensing, 43 (12), 2747–2751. doi:10.1109/TGRS.2005.855066
  • Jafari, R. and Lewis, M.M., 2012. Arid land characterisation with EO-1 Hyperion hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 19, 298–307. doi:10.1016/j.jag.2012.06.001
  • James, H.L., 1954. Sedimentary facies of iron-formation. Economic Geology, 49 (3), 235–293. doi:10.2113/gsecongeo.49.3.235
  • Jensen, J.R., 2007. Remote sensing of the environment: an earth resource perspective 2/e. London:Pearson Education India.
  • Kalinowski, A. and Oliver, S., 2004. ASTER mineral index processing manual. Remote Sensing Applications, Geoscience Australia, 37, 36.
  • Khan, S.D., Mahmood, K., and Casey, J.F., 2007. Mapping of Muslim Baghophiolite complex (Pakistan) using new remote sensing and field data. Journal of Asian Earth Sciences, 30 (2), 333–343. doi:10.1016/j.jseaes.2006.11.001
  • Kruse, F.A., Boardman, J.W., and Huntington, J.F., 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1388–1400. doi:10.1109/TGRS.2003.812908
  • Kumar, C., et al., 2014. Sub-pixel mineral mapping using EO-1 Hyperion hyperspectral data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40 (8), 455. doi:10.5194/isprsarchives-XL-8-455-2014
  • Kumar, R., 1985. Fundamentals of historical geology and stratigraphy of India. New York, NY: Wiley.
  • Kusuma, K.N., Ramakrishnan, D., and Pandalai, H.S., 2012. Spectral pathways for effective delineation of high-grade bauxites: a case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data. International Journal of Remote Sensing, 33 (22), 7273–7290. doi:10.1080/01431161.2012.700131
  • Landis, J.R. and Koch, G.G., 1977. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 363–374. doi:10.2307/2529786
  • Magendran, T. and Sanjeevi, S., 2013a. A study on the potential of satellite image-derived hyperspectral signatures to assess the grades of iron ore deposits. Journal of the Geological Society of India, 82 (3), 227–235. doi:10.1007/s12594-013-0145-0
  • Magendran, T. and Sanjeevi, S., 2013b. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India. International Journal of Applied Earth Observation and Geoinformation, 26, 413–426. doi:10.1016/j.jag.2013.09.004
  • Mars, J.C. and Rowan, L.C., 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114 (9), 2011–2025. doi:10.1016/j.rse.2010.04.008
  • Massironi, M., et al., 2008. Interpretation and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif (eastern Anti-Atlas, Morocco) interpretation of ASTER data for geological mapping and granitoids detection. Geosphere, 4 (4), 736–759. doi:10.1130/GES00161.1
  • Mia, M.B. and Fujimitsu, Y., 2012. Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. Journal of Earth System Science, 121 (4), 1049–1057. doi:10.1007/s12040-012-0211-9
  • Mielke, C., et al., 2014. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: hyperion/OLI and EnMAP/Sentinel-2. Remote Sensing, 6 (8), 6790–6816. doi:10.3390/rs6086790
  • Moghtaderi, A., Moore, F., and Mohammadzadeh, A., 2007. The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. Journal of Asian Earth Sciences, 30 (2), 238–252. doi:10.1016/j.jseaes.2006.09.004
  • Molan, Y.E., Refahi, D., and Tarashti, A.H., 2014. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 27, 117–127. doi:10.1016/j.jag.2013.09.014
  • Murthy, B., et al., 2009. Geophysical exploration for manganese-some first hand examples from Keonjhar district, Orissa. Journal Industrial Geophys Union, 13 (3), 149–161.
  • Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008. The concise geologic time scale. Cambridge: Cambridge University Press.
  • Pearlman, J.S., et al., 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1160–1173. doi:10.1109/TGRS.2003.815018
  • Pour, A.B. and Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42 (6), 1309–1323. doi:10.1016/j.jseaes.2011.07.017
  • Pour, A.B. and Hashim, M., 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. doi:10.1016/j.oregeorev.2011.09.009
  • Pour, A.B. and Hashim, M., 2014. ASTER, ALI and hyperion sensors data for lithological mapping and ore minerals exploration. Springerplus, 3 (1), 130. doi:10.1186/2193-1801-3-130
  • Qari, M.H.T., et al., 2008. Utilization of Aster and Landsat data in geologic mapping of basement rocks of Arafat Area, Saudi Arabia. Arabian Journal Sciences Engineering, 33, 99–116.
  • Raj, S.K., et al., 2015. Iron oxides mapping from E0-1 Hyperion data. Journal of the Geological Society of India, 86 (6), 717–725. doi:10.1007/s12594-015-0364-7
  • Rajendran, S., et al., 2011. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. Journal of Asian Earth Sciences, 41 (1), 99–106. doi:10.1016/j.jseaes.2011.01.004
  • Research Systems Inc., 2003. ENVI tutorial, ENVI software package version 4.0. Boulder, CO: Research Systems, Inc.
  • Rossel, R.V., et al., 2009. In situ measurements of soil colour mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150 (3), 253–266. doi:10.1016/j.geoderma.2009.01.025
  • Roy, S. and Venkatesh, A.S., 2009. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis. Journal of Earth System Science, 118 (6), 619–641. doi:10.1007/s12040-009-0056-z
  • San, B.T. and Süzen, M.L., 2011. Evaluation of cross-track illumination in EO-1 Hyperion imagery for lithological mapping. International Journal of Remote Sensing, 32 (22), 7873–7889. doi:10.1080/01431161.2010.532175
  • Satpathy, B. and Beura, D., 2013. Establishment of lithostratigraphy of some banded iron formations of iron ore super group of Odisha, India. International Journal of Engineering and Innovative Technology, 2 (7), 146–150.
  • Scheffler, D. and Karrasch, P., 2014. Destriping of hyperspectral image data: an evaluation of different algorithms using EO-1 Hyperion data. Journal of Applied Remote Sensing, 8 (1), 083645. doi:10.1117/1.JRS.8.083645
  • Sherman, D.M. and Waite, T.D., 1985. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70 (11-12), 1262–1269.
  • Singh, M., et al., 2016. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: implications for hematite deposits on Mars. Geoscience Frontiers, 7 (6), 927–936. doi:10.1016/j.gsf.2015.11.003
  • Son, Y.S., Kang, M.K., and Yoon, W.J., 2014. Lithological and mineralogical survey of the Oyu Tolgoi region, Southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. International Journal of Applied Earth Observation and Geoinformation, 26, 205–216. doi:10.1016/j.jag.2013.07.004
  • Story, M. and Congalton, R.G., 1986. Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing, 52 (3), 397–399.
  • Thangavelu, M., Shanmugam, S., and Bhattacharya, A.K., 2011. Hyperspectral radiometry to quantify the grades of iron ores of Noamundi and Joda mines, Eastern India. Journal of the Indian Society of Remote Sensing, 39 (4), 473–483. doi:10.1007/s12524-011-0109-z
  • Van Deer Meer, F.D., and De Jong, S.M., eds. 2001. Imaging spectrometry: basic principles and prospective applications. Dordrecht: Springer.
  • Van Deer Meer, F. and De Jong, S.M., 2012. Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14 (1), 112–128. doi:10.1016/j.jag.2011.08.002
  • Van Ede, R., 2004. Destriping and geometric correction of an ASTER level 1a image. Ultrecht, Netherlands: Department of Physical Geography, Faculty of GeoSciences, Ultrecht University.
  • Vicente, L.E. and de Souza Filho, C.R., 2011. Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115 (8), 1824–1836. doi:10.1016/j.rse.2011.02.023
  • Watts, D.R. and Harris, N.B., 2005. Mapping granite and gneiss in domes along the North Himalayan antiform with ASTER SWIR band ratios. Geological Society of America Bulletin, 117 (7–8), 879–886. doi:10.1130/B25592.1
  • Yitagesu, F.A., et al., 2011. Spectral characteristics of clay minerals in the 2.5–14μm wavelength region. Applied Clay Science, 53 (4), 581–591. doi:10.1016/j.clay.2011.05.007
  • Zadeh, M.H., et al., 2014. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 hyperion data. Advances in Space Research, 53 (3), 440–451. doi:10.1016/j.asr.2013.11.029
  • Zhang, X., Pazner, M., and Duke, N., 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62 (4), 271–282. doi:10.1016/j.isprsjprs.2007.04.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.