438
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Low-cost system for radiometric calibration of UAV-based multispectral imagery

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Albetis, J., et al., 2019. On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine trunk diseases. Remote Sensing. 11. doi:10.3390/rs11010023
  • Ali, I., et al., 2016. Satellite remote sensing of grasslands: from observation to management. Journal of Plant Ecology, 9 (6), 649–671. doi:10.1093/jpe/rtw005
  • Batistoti, J., et al., 2019. Estimating pasture biomass and canopy height in Brazilian Savanna using UAV photogrammetry. Remote Sensing, 11 (20), 1–12. doi:10.3390/rs11202447
  • Bégué, A., et al., 2018. Remote sensing and cropping practices: a review. Remote Sensing, 10 (2), 1–32. doi:10.3390/rs10010099
  • Ben-Dor, E., et al., 2009. Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, 113, S38–S55. doi:10.1016/j.rse.2008.09.019
  • Bogue, R., 2017. Sensors key to advances in precision agriculture. Sensor Review, 37 (1), 1–6. doi:10.1108/SR-10-2016-0215
  • Cao, S., et al., 2019. Radiometric calibration assessments for UAS-borne multispectral cameras: laboratory and field protocols. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 132–145. doi:10.1016/j.isprsjprs.2019.01.016
  • Corti, M., et al., 2019. Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture, 20 (4), 675–696. doi:10.1007/s11119-018-9609-y
  • Crusiol, L.G.T., et al., 2017. Semi professional digital camera calibration techniques for Vis/NIR spectral data acquisition from an unmanned aerial vehicle. International Journal of Remote Sensing, 38 (8–10), 2717–2736. doi:10.1080/01431161.2016.1264032
  • Del Pozo, S., et al., 2014. Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system. Remote Sensing, 6 (3), 1918–1937. doi:10.3390/rs6031918
  • Demattê, J.A.M., et al., 2018. Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sensing of Environment, 212, 161–175. doi:10.1016/j.rse.2018.04.047
  • Deng, L., et al., 2018. A subband radiometric calibration method for UAV-based multispectral remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (8), 2869–2880. doi:10.1109/JSTARS.2018.2842466
  • Dinguirard, M. and Slater, P.N., 1999. Calibration of space-multispectral imaging sensors: a review. Remote Sensing of Environment, 68 (3), 194–205. doi:10.1016/S0034-4257(98)00111-4
  • Fitzgerald, G.J., et al., 2006. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 7 (4), 233–248. doi:10.1093/jpe/rtw005
  • Forkuor, G., et al., 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PLoS One, 12, 1–21. doi:10.1371/journal.pone.0170478
  • Fu-min, W., et al., 2007. New vegetation index and its application in estimating leaf area index of rice. Rice Science, 195–203. doi:10.1016/s1672-6308(07)60027-4
  • Georgiev, G.T. and Butler, J.J., 2007. Long-term calibration monitoring of spectralon diffusers BRDF in the air-ultraviolet. Applied Optics, 46 (32), 7892–7899. doi:10.1364/AO.46.007892
  • Gitelson, A.A., Kaufman, Y.J., and Merzlyak, M.N., 1996. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58 (3), 289–298. doi:10.1016/S0034-4257(96)00072-7
  • Gómez, C., White, J.C., and Wulder, M.A., 2016. Optical remotely sensed time series data for land cover classification: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. doi:10.1016/j.isprsjprs.2016.03.008
  • Guo, Y., et al., 2019. Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform. Sustain, 11, 1–24. doi:10.3390/su11040978
  • Herrero-Huerta, M., et al., 2014. Vicarious radiometric calibration of a multispectral sensor from an aerial trike applied to precision agriculture. Computers and Electronics in Agriculture, 108, 28–38. doi:10.1016/j.compag.2014.07.001
  • Honkavaara, E., et al., 2009. Digital airborne photogrammetry—A new tool for quantitative remote sensing?—A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sensing, 1 (3), 577–605. doi:10.3390/rs1030577
  • Iqbal, F., Lucieer, A., and Barry, K., 2018. Simplified radiometric calibration for UAS-mounted multispectral sensor. European Journal of Remote Sensing, 51 (1), 301–313. doi:10.1080/22797254.2018.1432293
  • Karpouzli, E. and Malthus, T., 2003. The empirical line method for the atmospheric correction of IKONOS imagery. International Journal of Remote Sensing, 24 (5), 1143–1150. doi:10.1080/0143116021000026779
  • Lelong, C.C.D., et al., 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors, 8 (5), 3557–3585. doi:10.3390/s8053557
  • Lima-Cueto, F.J., et al., 2019. Using vegetation indices and a UAV imaging platform to quantify the density of vegetation ground cover in olive groves (Olea Europaea L.) in Southern Spain. Remote Sensing, 11 (21), 2564. doi:10.3390/rs11212564
  • Maes, W.H. and Steppe, K., 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science, 24 (2), 152–164. doi:10.1016/j.tplants.2018.11.007
  • Marin, D.B., et al., 2019. Multispectral radiometric monitoring of bacterial blight of coffee. Precision Agriculture, 20, 959–982. doi:10.1007/s11119-018-09623-9
  • Martínez-Martínez, V., et al., 2018. Leaf and canopy reflectance spectrometry applied to the estimation of angular leaf spot disease severity of common bean crops. PLoS One, 13, 1–18. doi:10.1371/journal.pone.0196072
  • Martins, R.N., et al., 2020. Nitrogen variable rate fertilization in corn crop prescribed by optical sensor. Journal of Plant Nutrition, 1–8. doi:10.1080/01904167.2020.1729805
  • Milton, E.J., 1987. Principles of field spectroscopy. International Journal of Remote Sensing, 8, 1807–1827. doi:10.1080/01431168708954818
  • Milton, E.J., et al., 2009. Progress in field spectroscopy. Remote Sensing of Environment, 113, S92–S109. doi:10.1016/j.rse.2007.08.001
  • Mulla, D.J., 2013. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosystems Engineering, 114 (4), 358–371. doi:10.1016/j.biosystemseng.2012.08.009
  • Navrozidis, I., et al., 2018. Identification of purple spot disease on asparagus crops across spatial and spectral scales. Computers and Electronics in Agriculture, 148, 322–329. doi:10.1016/j.compag.2018.03.035
  • Poncet, A.M., et al., 2019. Multispectral UAS data accuracy for different radiometric calibration methods. Remote Sensing, 11 (16), 1–22. doi:10.3390/rs11161917
  • QGIS Development Team, 2016. QGIS geographic information system. Open source geospatial Foundation Project, Gossal, Suiça. http://www.qgis.org/
  • Rouse, J.W., et al., 1973. Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the third ERTS symposium, Goddard Space Flight Center, Washington, 309–317.
  • Secker, J., et al., 2001. Vicarious calibration of airborne hyperspectral sensors in operational environments. Remote Sensing of Environment, 76 (1), 81–92. doi:10.1016/S0034-4257(00)00194-2
  • Viana, L.D.A., et al., 2019. Optical sensors for precision agriculture: an outlook. Journal of Experimental Agriculture International, 1–9. doi:10.9734/jeai/2019/v35i230203
  • Wang, C. and Myint, S.W., 2015. A simplified empirical line method of radiometric calibration for small unmanned aircraft systems-based remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (5), 1876–1885. doi:10.1109/JSTARS.2015.24227160
  • Xavier, T.W.F., et al., 2019. Identification of Ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery. Drones, 3 (2), 33. doi:10.3390/drones3020033
  • Yu, N., et al., 2016. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sensing of Environment, 187, 91–101. doi:10.1016/j.rse.2016.10.005
  • Zhang, B., et al., 2016. Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation. Remote Sensing, 8, 1–21. doi:10.3390/rs8010010
  • Zhang, C. and Kovacs, J.M., 2012. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13 (6), 693–712. doi:10.1007/s11119-012-9274-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.