209
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Optimising Sentinel-2 MSI spatial resolution for estimating foliar nitrogen concentration in miombo woodlands

, &

References

  • Abdel-Rahman, E.M., Ahmed, F.B., and Ismail, R., 2013. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. International Journal of Remote Sensing, 34, 712–728. doi:10.1080/01431161.2012.713142
  • Anderson, J.M. and Ingram, J., 1989. Tropical soil biology and fertility. Wallingford, UK: CAB international.
  • Asner, G.P. and Martin, R.E., 2009. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 7, 269–276. doi:10.1890/070152
  • Bortolot, Z. and Wynne, R., 2003. A method for predicting fresh green leaf nitrogen concentrations from shortwave infrared reflectance spectra acquired at the canopy level that requires no in situ nitrogen data. International Journal of Remote Sensing, 24, 619–624. doi:10.1080/01431160304993
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Byers, A.B., 2001. Conserving the miombo ecoregion. In: Finalreconnaissance summary report. Harare, Zimbabwe: WWF, Southern Africa Regional Program Office (SARPO), 24.
  • Campbell, B.M., 1996. The miombo in transition: woodlands and welfare in Africa. Bogor, Indonesia: Cifor.
  • Chen, D., Stow, D., and Gong, P., 2004. Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. International Journal of Remote Sensing, 25, 2177–2192. doi:10.1080/01431160310001618464
  • Cho, M.A., et al., 2013. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data. Landscape Ecology, 28, 1479–1491. doi:10.1007/s10980-013-9908-7
  • Cho, M.A. and Skidmore, A.K., 2006. A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sensing of Environment, 101, 181–193. doi:10.1016/j.rse.2005.12.011
  • Clevers, J.G.P.W. and Gitelson, A.A., 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and −3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351. doi:10.1016/j.jag.2012.10.008
  • Dewees, P.A., et al., 2010. Managing the miombo woodlands of southern Africa: policies, incentives and options for the rural poor. Journal of Natural Resources Policy Research, 2, 57–73. doi:10.1080/19390450903350846
  • Efron, B., 1979. Bootstrap methods: another look at the jacknife. Annals of Statistics, 7, 1–26. doi:10.1214/aos/1176344552
  • Efron, B. and Tibshirani, R.J., 1994. An introduction to the bootstrap. New York: CRC press.
  • Frampton, W.J., et al., 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83–92. doi:10.1016/j.isprsjprs.2013.04.007
  • Gamon, J.A., et al., 1995. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5, 28–41. doi:10.2307/1942049
  • Haralick, R.M., 1979. Statistical and structural approaches to texture. Proceedings of the IEEE, 67, 786–804. doi:10.1109/PROC.1979.11328
  • Haralick, R.M. and Shanmugam, K., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 610–621. doi:10.1109/TSMC.1973.4309314
  • Hyppänen, H., 1996. Spatial autocorrelation and optimal spatial resolution of optical remote sensing data in boreal forest environment. International Journal of Remote Sensing, 17, 3441–3452. doi:10.1080/01431169608949161
  • Ismail, R., et al., 2008. Determining the optimal spatial resolution of remotely sensed data for the detection of sirex noctilio infestations in pine plantations in kwazulu-natal, South Africa. South African Geographical Journal, 90, 22–31. doi:10.1080/03736245.2008.9725308
  • Jew, E.K., et al., 2016. Miombo woodland under threat: consequences for tree diversity and carbon storage. Forest Ecology and Management, 361, 144–153. doi:10.1016/j.foreco.2015.11.011
  • Kayitakire, F., Hamel, C., and Defourny, P., 2006. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment, 102, 390–401. doi:10.1016/j.rse.2006.02.022
  • Knyazikhin, Y., et al., 2013. Hyperspectral remote sensing of foliar nitrogen content. PNAS, 110, 811–812. doi:10.1073/pnas.1210196109
  • Lepine, L.C., et al., 2016. Examining spectral reflectance features related to foliar nitrogen in forests: implications for broad-scale nitrogen mapping. Remote Sensing of Environment, 173, 174–186. doi:10.1016/j.rse.2015.11.028
  • Liaw, A. and Wiener, M., 2002. Classification and regression by randomForest. R News, 2, 18–22.
  • Loozen, Y., et al., 2019. Exploring the use of vegetation indices to sense canopy nitrogen to phosphorous ratio in grasses. International Journal of Applied Earth Observation and Geoinformation, 75, 1–14. doi:10.1016/j.jag.2018.08.012
  • Lottering, R. and Mutanga, O., 2016. Optimizing the spatial resolution of WorldView-2 imagery for discriminating forest vegetation at subspecies level in KwaZulu-Natal, South Africa. Geocarto International, 31, 870–880. doi:10.1080/10106049.2015.1094519
  • Luca, C., 2016. Semi-automatic classification plugin documentation.
  • Marceau, D.J., et al., 1994. Remote sensing and the measurement of geographical entities in a forested environment. 2. The optimal spatial resolution. Remote Sensing of Environment, 49, 105–117. doi:10.1016/0034-4257(94)90047-7
  • Masocha, M. 2010. Savanna aliens. PhD. University of Twente.
  • Menges, C., Hill, G., and Ahmad, W., 2001. Use of airborne video data for the characterization of tropical savannas in northern Australia: the optimal spatial resolution for remote sensing applications. International Journal of Remote Sensing, 22, 727–740. doi:10.1080/01431160051060129
  • Ming, D., et al., 2011. Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy. Mathematical and Computer Modelling, 54, 1061–1068. doi:10.1016/j.mcm.2010.11.036
  • Mooney, C.Z. and Duval, R.D., 1993. Bootstrapping: a nonparametric approach to statistical inference. Newbury Park: Sage.
  • Mutanga, O., Adam, E., and Cho, M.A., 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. doi:10.1016/j.jag.2012.03.012
  • Mutanga, O. and Skidmore, A., 2004. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment, 90, 104–115. doi:10.1016/j.rse.2003.12.004
  • Mutowo, G., Mutanga, O., and Masocha, M., 2018a. Evaluating the applications of the near-infrared region in mapping foliar N in the miombo woodlands. Remote Sensing, 10, 505. doi:10.3390/rs10040505
  • Mutowo, G., Mutanga, O., and Masocha, M., 2018b. Mapping foliar N in miombo woodlands using sentinel-2 derived chlorophyll and structural indices. Journal of Applied Remote Sensing, 12, 046028. doi:10.1117/1.JRS.12.046028
  • Mutowo, G., Mutanga, O., and Masocha, M., 2019. Including shaded leaves in a sample affects the accuracy of remotely estimating foliar nitrogen. GIScience & Remote Sensing, 56, 1–14.
  • Myint, S.W., et al., 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115, 1145–1161. doi:10.1016/j.rse.2010.12.017
  • Novozamsky, I., et al., 1983. A novel digestion technique for multi‐element plant analysis. Communications in Soil Science & Plant Analysis, 14, 239–248. doi:10.1080/00103628309367359
  • Nyamapfene, K.W., 1991. The soils of Zimbabwe. Harare: Nehanda Publishers.
  • Ollinger, S.V., 2011. Sources of variability in canopy reflectance and the convergent properties of plant. New Phytologist, 189, 375–394. doi:10.1111/j.1469-8137.2010.03536.x
  • Ollinger, S.V., et al., 2013. Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems. Proceedings of the National Academy of Sciences, 110, E2437–E2437. doi:10.1073/pnas.1304176110
  • Ollinger, S.V., et al., 2008. Canopy nitrogen, carbon assimilation and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. PNAS, 105, 19335–19340. doi:10.1073/pnas.0810021105
  • Ollinger, S.V. and Smith, M.-L., 2005. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems, 8, 760–778. doi:10.1007/s10021-005-0079-5
  • Prasad, A.M., Iverson, L.R., and Liaw, A., 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181–199. doi:10.1007/s10021-005-0054-1
  • Ramoelo, A., et al., 2015a. Potential of Sentinel-2 spectral configuration to assess rangeland quality. Journal of Applied Remote Sensing, 9, 1–11. doi:10.1117/1.JRS.9.094096
  • Ramoelo, A., et al., 2015b. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2data. International Journal of Applied Earth Observation and Geoinformation, 43, 43–54. doi:10.1016/j.jag.2014.12.010
  • Rao, P.N., et al., 2002. Textural analysis of IRS-1D panchromatic data for land cover classification. International Journal of Remote Sensing, 23, 3327–3345. doi:10.1080/01431160110104665
  • Shoko, C., Masocha, M., and Dube, T., 2015. A new potential method to estimate abundance of small game species. African Journal of Ecology, 53, 406–412. doi:10.1111/aje.12211
  • Syampungani, S., et al., 2009. The miombo woodlands at the cross roads: potential threats, sustainable livelihoods, policy gaps and challenges. Natural Resources Forum, 33, Wiley Online Library, 150–159. doi:10.1111/j.1477-8947.2009.01218.x
  • Team, R.D.C., 2009. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Tran, T.D.-B., et al., 2011. Optimizing spatial resolution of imagery for urban form detection—the cases of France and Vietnam. Remote Sensing, 3, 2128–2147. doi:10.3390/rs3102128
  • Van Der Putten, W.H., et al., 2000. Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia, 124, 91–99. doi:10.1007/s004420050028
  • Wang, L. and He, D., 1990. A new statistical approach for texture analysis. Photogrammetric Engineering and Remote Sensing, 56, 61–66.
  • Woodcock, C.E. and Strahler, A.H., 1987. The factor of scale in remote sensing. Remote Sensing of Environment, 21, 311–332. doi:10.1016/0034-4257(87)90015-0
  • Wu, H., et al., 2019. Mapping foliar nutrition using WorldView-3 and WorldView-2 to assess koala habitat suitability. Remote Sensing, 11, 215. doi:10.3390/rs11030215
  • Yoder, B.J. and Pettigrew-Crosby, R.E., 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53, 199–211. doi:10.1016/0034-4257(95)00135-N
  • Yuan, X., King, D., and Vlcek, J., 1991. Sugar maple decline assessment based on spectral and textural analysis of multispectral aerial videography. Remote Sensing of Environment, 37, 47–54. doi:10.1016/0034-4257(91)90049-C
  • Zengeya, F.M., Mutanga, O., and Murwira, A., 2013. Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. International Journal of Applied Earth Observation and Geoinformation, 21, 513–524. doi:10.1016/j.jag.2012.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.