524
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Community detection, road importance assessment, and urban function pattern recognition: a big data approach

&

References

  • Ahas, R., et al., 2015. Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science, 29, 2017–2039. doi:10.1080/13658816.2015.1063151
  • Bao, J., et al., 2017. Exploring bikesharing travel patterns and trip purposes using smart card data and online point of interests. Networks and Spatial Economics, 17 (4), 1–23. doi:10.1007/s11067-017-9366-x
  • Barabasi, A.-L. and Albert, R., 1999. Emergence of scaling in random networks. Science, 286, 509–512. doi:10.1126/science.286.5439.509
  • Boeing, G., 2017. OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers Environment & Urban Systems, 65, 126–139. doi:10.1016/j.compenvurbsys.2017.05.004
  • Boeing, G., 2018. Measuring the complexity of urban form and design. Urban Design International.
  • Boeing, G., 2020. A multi-scale analysis of 27,000 urban street networks: every US city, town, urbanized area, and Zillow neighborhood. Environment & Planning B: Urban Analytics and City Science47(4), 590–608.
  • Borgnat, P., et al., 2011. Shared bicycles in a city: a signal processing and data analysis perspective. Advances in Complex Systems, 14, 415–438. doi:10.1142/S0219525911002950
  • Chen, G., Wang, X., and Li, X., 2012. Introduction to complex network: models,structures and dynamics. Beijing: Higher Education Press.
  • Chen, Y., et al., 2017. Delineating urban functional areas with building-level social media data: a dynamic time warping (DTW) distance based k-medoids method. Landscape and Urban Planning, 160, 48–60. doi:10.1016/j.landurbplan.2016.12.001
  • Clauset, A., Newman, M.E.J., and Moore, C., 2004. Finding community structure in very large networks. Physical Review E, 70 (6), 066111. doi:10.1103/PhysRevE.70.066111
  • Coscia, M., Giannotti, F., and Pedreschi, D., 2011. A Classification for community discovery methods in complex networks. Statistical Analysis & Data Mining the Asa Data Science Journal, 4 (5), 512–546. doi:10.1002/sam.10133
  • Dong, L., Ratti, C., and Zheng, S., 2019. Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proceedings of the National Academy of Sciences, 116 (31), 201903064. doi:10.1073/pnas.1903064116
  • Frei, C., Hyland, M., and Mahmassani, H.S., 2017. Flexing service schedules: assessing the potential for demand-adaptive hybrid transit via a stated preference approach. Transportation Research Part C: Emerging Technologies, 76, 71–89. doi:10.1016/j.trc.2016.12.017
  • Gao, S., et al., 2013. Discovering spatial interaction communities from mobile phone data. Transactions in Gis, 17 (3), 463–481. doi:10.1111/tgis.12042
  • García-Albertos, P., et al., 2019. Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis. Transportation Research Part A: Policy and Practice, 125, 294–307.
  • Getis, A. and Ord, K., 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x
  • Guan, C., et al., 2020. Delineating urban park catchment areas using mobile phone data: a case study of Tokyo. Computers Environment and Urban Systems, 81, 101474. doi:10.1016/j.compenvurbsys.2020.101474
  • Gutierrez, J., et al., 2017. The eruption of Airbnb in tourist cities: comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona. Tourism Management, 62, 278–291. doi:10.1016/j.tourman.2017.05.003
  • Haitao, M.A., et al., 2015. Structure of Chinese city network as driven by technological knowledge flows. Chinese Geographical Science, 25 (4), 498–510.
  • Huang, J., et al., 2018. Tracking job and housing dynamics with smartcard data. Proceedings of the National Academy of Sciences, 115 (50), 201815928. doi:10.1073/pnas.1815928115
  • Jabbari, M., Fonseca, F., and Ramos, R., 2018. Combining multi-criteria and space syntax analysis to assess a pedestrian network: the case of Oporto. Journal of Urban Design, 23 (1), 23–41. doi:10.1080/13574809.2017.1343087
  • Jiang, S., et al., 2015. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Computers, Environment and Urban Systems, 53, 36–46. doi:10.1016/j.compenvurbsys.2014.12.001
  • Jiao, J. and Bai, S., 2020. An empirical analysis of Airbnb listings in forty American cities. Cities, 99, 102618. doi:10.1016/j.cities.2020.102618
  • Jiao, J., Wang, J., and Jin, F., 2017. Impacts of high-speed rail lines on the city network in China. Journal of Transport Geography, 60, 257–266. doi:10.1016/j.jtrangeo.2017.03.010
  • Li, D., Wei, Y., and Wang, T., 2015. Spatial and temporal evolution of urban innovation network in China. Habitat International, 49, 484–496. doi:10.1016/j.habitatint.2015.05.031
  • Li, Q., Zhou, S., and Wen, P., 2019. The relationship between centrality and land use patterns: empirical evidence from five Chinese metropolises. Computers, Environment and Urban Systems, 78, 101356. doi:10.1016/j.compenvurbsys.2019.101356
  • Liu, K., et al., 2020. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities, 99, 102610. doi:10.1016/j.cities.2020.102610
  • Liu, X., et al., 2015. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43, 78–90. doi:10.1016/j.jtrangeo.2015.01.016
  • Liu, X., et al., 2016. Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 30 (2), 334–350. doi:10.1080/13658816.2015.1086923
  • Liu, X., et al., 2017. Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science, 31 (8), 1675–1696. doi:10.1080/13658816.2017.1324976
  • Ord, J.K. and Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27 (4), 286–306.
  • Paradis, E., 2011. Moran’s autocorrelation coefficient in comparative methods. ReCALL. https://doi.org/10.1093/jb/mvu081
  • Prasannakumar, V., et al., 2011. Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia - Social and Behavioral Sciences, 21, 317–325. doi:10.1016/j.sbspro.2011.07.020
  • Ren, X., et al., 2019. Impact of high-speed rail on intercity travel behavior change: the evidence from the Chengdu-Chongqing passenger dedicated line. Journal of Transport and Land Use, 12 (1). doi:10.5198/jtlu.2019.1302
  • Rossi, F. and Becker, G., 2019. Creating forest management units with hot spot analysis (getis-ord Gi*) over a forest affected by mixed-severity fires. Australian Forestry, 82 (4), 1–10. doi:10.1080/00049158.2019.1678714
  • Steadman, P., 2004. Developments in space syntax. Environment and Planning B: Planning and Design, 31 (4), 483–486. doi:10.1068/b3104ed
  • Turner, A., 2007. From axial to road-centre lines: a new representation for space syntax and a new model of route choice for transport network analysis. Environment and Planning B: Planning and Design, 34 (3), 539–555. doi:10.1068/b32067
  • Verburg, P.H., Ellis, E.C., and Letourneau, A., 2011. A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters, 6 (3), 034019. doi:10.1088/1748-9326/6/3/034019
  • Wang, F. and Xu, Y., 2011. Estimating O–D travel time matrix by Google maps API: implementation, advantages, and implications. Annals of GIS, 17 (4), 199–209. doi:10.1080/19475683.2011.625977
  • Wang, M., et al., 2020. Road network structure and ride-sharing accessibility: a network science perspective. Computers, Environment and Urban Systems, 80, 101430. doi:10.1016/j.compenvurbsys.2019.101430
  • Wang, Y., et al., 2019. Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method. Cities, 96, 102406.
  • Watts, D.J. and Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature, 393 (6684), 440–442. doi:10.1038/30918
  • Wei, S., et al., 2018. Open big data from ticketing website as a useful tool for characterizing spatial features of the Chinese high-speed rail system. Journal of Spatial Science, 63 (2), 265–277. doi:10.1080/14498596.2018.1497561
  • Wei, S., et al., 2019a. Hierarchical structure in the world’s largest high-speed rail network. Plos One, 14 (2), e0211052.
  • Wei, S. and Wang, L., 2020. Examining transportation network structures through mobile signaling data in urban China: a case study of Yixing. Journal of Spatial Science, 1–18.
  • Wei, S., Xu, J., and Ma, H., 2019b. Exploring public bicycle network structure based on complex network theory and shortest path analysis: the public bicycle system in Yixing, China. Transportation Planning and Technology, 42 (3), 1–15. doi:10.1080/03081060.2019.1576385
  • Weiss, D.J., et al., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 553 (7688), 333–336. doi:10.1038/nature25181
  • Xia, N., et al., 2018. Accessibility based on gravity-radiation model and Google maps API: a case study in Australia. Journal of Transport Geography, 72, 178–190. doi:10.1016/j.jtrangeo.2018.09.009
  • Xu, D., et al., 2018. Real-time road traffic state prediction based on Kernel-KNN. Transportmetrica A: Transport Science, 16, 1–23.
  • Yang, X., et al., 2019. Exploring the characteristics of an intra-urban bus service network: a case study of Shenzhen, China. ISPRS International Journal of Geo-Information, 8 (11), 486. doi:10.3390/ijgi8110486
  • Ye, H. and Yao, Y., 2019. Hierarchical community detection and functional area identification with OSM roads and complex graph theory. International Journal of Geographical Information Science, 33, 1569–1587. doi:10.1080/13658816.2019.1584806
  • Ye, Y., et al., 2019. The visual quality of streets: a human-centred continuous measurement based on machine learning algorithms and street view images. Environment and Planning B: Urban Analytics and City Science, 46, 1439–1457.
  • Yin, L. and Wang, Z., 2016. Measuring visual enclosure for street walkability: using machine learning algorithms and Google street view imagery. Applied Geography, 76, 147–153. doi:10.1016/j.apgeog.2016.09.024
  • Yuan, J., Zheng, Y., and Xie, X., 2012. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 186–194).
  • Zhang, F., et al., 2020a. Uncovering inconspicuous places using social media check-ins and street view images. Computers, Environment and Urban Systems, 81, 101478. doi:10.1016/j.compenvurbsys.2020.101478
  • Zhang, J., et al., 2021. Measuring the accessibility of public green spaces in urban areas using web map services. Applied Geography, 126, 102381. doi:10.1016/j.apgeog.2020.102381
  • Zhang, W., et al., 2020b. Spatial patterns and determinant factors of population flow networks in China: analysis on tencent location big data. Cities, 99, 102640. doi:10.1016/j.cities.2020.102640
  • Zhang, X., et al., 2016. Modeling and analysis of bus weighted complex network in Qingdao city based on dynamic travel time. Multimedia Tools and Applications, 75 (24), 17553–17572.
  • Zhao, P., et al., 2018. Unveiling cabdrivers’ dining behavior patterns for site selection of “taxi canteen” using taxi trajectory data. Transportmetrica A: Transport Science, 16 (1), 137–160.
  • Zhong, C., et al., 2014. Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28 (11), 2178–2199. doi:10.1080/13658816.2014.914521

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.