156
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Quantifying spatial similarity for use as constraints in map generalisation

ORCID Icon
Pages 23-42 | Received 06 Sep 2022, Accepted 30 Nov 2022, Published online: 21 Dec 2022

References

  • Ai, T., et al., 2015. A vector field model to handle the displacement of multiple conflicts in building generalization. International Journal of Geographical Information Science, 29 (8), 1310–1331. doi:10.1080/13658816.2015.1019886
  • Arlinghaus, S.L., 1994. PHB practical handbook of curve fitting. Boca Raton: CRC Press.
  • Bader, M. and Weibel, R., 1997. Detecting and resolving size and proximity conflicts in the generalization of polygonal maps. In: Proceedings of the 18th International Cartographic Conference, 23–27 June Stockholm, Sweden, 27.
  • Barrault, M., et al., 2001. Integrating multi-agent, object-oriented and algorithmic techniques for improved automated map generalization. In: Proceedings of the 20th International Cartographic Conference. Beijing, China, 2110–2116.
  • Biagioni, J. and Eriksson, J., 2012. Inferring road maps from global positioning system traces. Transportation Research Record: Journal of the Transportation Research Board, 2291 (1), 61–71. doi:10.3141/2291-08
  • Brassel, K.E. and Weibel, R., 1988. A review and conceptual framework of automated map generalization. International Journal of Geographical Information Science, 2 (3), 229–244. doi:10.1080/02693798808927898
  • Brazile, F., 2000. Semantic infrastructure and methods to support quality evaluation in cartographic generalization. Doctorate theses. University of Zurich.
  • Butler, L.K., et al., 2013. Opposite but analogous effects of road density on songbirds with contrasting habitat preferences. Animal Conservation, 16 (1), 77–85. doi:10.1111/j.1469-1795.2012.00576.x
  • Buttenfield, B., 1991. Map generalization: making rules for knowledge representation. London: Longman Scientific & Technical.
  • Cheng, T., 2001. Quality assessment of model-oriented generalization. In: Fourth ACI Workshop on Progress in Automated Map Generalization, Beijing, China.
  • Cheng, G., et al., 2017. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 55 (6), 3322–3337. doi:10.1109/TGRS.2017.2669341
  • Cheng, T. and Li, Z.L., 2006. Toward quantitative measures for the semantic quality of polygon generalization. Cartographica: The International Journal for Geographic Information and Geovisualization, 41 (2), 135–148. doi:10.3138/0172-6733-227U-8155
  • Courtial, A., Touya, G., and Zhang, X., 2022. Constraint-based evaluation of map images generalized by deep learning. Journal of Geovisualization and Spaital Analysis, 6, 13. doi:10.1007/s41651-022-00104-2
  • Daniel, C.B., Mathew, S., and Subbarayan, S., 2022. GIS-based study on the association between road centrality and socio-demographic parameters: a case study. Journal of Geovisualization and Spatial Analysis, 6 (1), 1–12. doi:10.1007/s41651-021-00095-6
  • Douglas, D. and Peucker, T., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10 (2), 112–122. doi:10.3138/FM57-6770-U75U-7727
  • Duchêne, C., et al., 2018. Multi-agents systems for cartographic generalization: feedback from past and on-going research. [Research Report] IGN (Institut National de l’Information Géographique et Forestière). LaSTIG, équipe COGIT. 2018. ffhal-01682131f. Available from: https://hal.archives-ouvertes.fr/hal-01682131
  • Duchene, C., Ruas, A., and Cambie, C., 2012. The cartacom model: transforming cartographic features into communicating agents for cartographic generalisation. International Journal of Geographical Information Science, 26 (9–10), 1533–1562. doi:10.1080/13658816.2011.639302
  • Edwardes, A. and Mackaness, W.A., 2000. Modelling knowledge for automated generalisation of categorical maps—a constraint-based approach. In: P. Atkinson and D. Martin, eds. Innovations in GIS 7. GIS and geocomputation. London, UK: Taylor & Francis, 161–174.
  • Filippovska, Y., Walter, V., and Fritsch, D., 2008. Quality evaluation of generalization algorithms, the international archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XXXVII. Part B2. Beijing, China.
  • Forghani, A., Kazemi, S., and Bruce, D., 2021. A machine-learning approach to generalisation of GIS data. International Journal of Geoinformatics, 17 (2), 41–59. doi:10.52939/ijg.v17i2.1757
  • Frank, R. and Ester, M., 2006. A quantitative similarity measure for maps. In: Proceedings of 12th International Symposium. Progress in Spatial Data Handling, Vienna, Austria. Springer, 435–150. doi:10.1007/3-540-35589-8_28
  • Harrie, L., 2001. An optimization approach to cartographic generalization. Doctorate thesis. Lund University.
  • Harrie, L. and Weibel, R., 2007. Modelling the overall process of generalisation. In: W. Mackaness, A. Ruas and L. Sarjakoski, eds. Generalisation of geographic information: cartographic modelling and applications. Oxford, UK: Elsevier, 67–87. doi:10.1016/B978-008045374-3/50006-5
  • ICA, 1973. Multilingual dictionary of technical terms in cartography. Wiesbaden: Franz Steiner Verlag GMBH.
  • Joao, E., 1998. Causes and consequences of map generalization. London: CRC Press.
  • Jones, C.B. and Ware, J.M., 2005. Map generalization in the web age. International Journal of Geographical Information Science, 19 (8–9), 859–870. doi:10.1080/13658810500161104
  • Kazemi, S. and Forghani, A., 2015. Cartographic knowledge acquisition: from practice to theory. International Journal of Geoinformatics, 11 (2), 57–72. Available from: https://journals.sfu.ca/ijg/index.php/journal/article/view/619
  • Kolb, W.M., 1984. Curve fitting for programmable calculators. Maryland: Syntec Inc.
  • Liu, M., He, G., and Long, Y., 2021. A semantics-based trajectory segmentation simplification method. Journal of Geovisualization and Spatial Analysis, 5, 19. doi:10.1007/s41651-021-00088-5
  • Mackaness, W. and Beard, M.K., 1993. Use of graph theory to support map generalization. Cartography and Geographic Information Systems, 20 (4), 210–221. doi:10.1559/152304093782637479
  • Mackaness, W.A., Burghardt, D., and Duchêne, C., 2017. Map generalization. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology, 1–16. doi:10.1002/9781118786352.wbieg1015
  • Mandelbrot, B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, New Series, 156 (3775), 636–638. doi:10.1126/science.156.3775.6
  • Maudet, A. and Touya, G., 2017. Multi-agent multi-level cartographic generalisation in CartAGen. In: International Conference on Practical Applications of Agents & Multi-agent Systems, Porto, Portugal. Springer International Publishing. doi:10.1007/978-3-319-07551-8_37ff.ffhal-01004377f
  • McMaster, R.B., 1986. A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13 (2), 103–117. doi:10.1559/152304086783900059
  • Mokhtarian, F. and Mackworth, A.K., 1992. A theory of multi-scale, curvature-based representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (8), 789–805. doi:10.1109/34.149591
  • Muller, J.C., 1987. Fractal and automated line generalization. The Cartographic Journal, 24 (1), 27–34. doi:10.1179/caj.1987.24.1.27
  • Peter, B., 2001. Measures for the generalization of polygonal maps with categorical data. In: Fourth ACI Workshop on Progress in Automated Map Generalization, Beijing, China.
  • Rodriguez, M.A. and Egenhofer, M.J., 2004. Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. International Journal of Geographical Information Science, 18 (3), 229–256. doi:10.1080/13658810310001629592
  • Ruas, A., 1998. A method for building displacement in automated map generalization. International Journal of Geographical Information Science, 12 (8), 789–803. doi:10.1080/136588198241509
  • Ruas, A. and Duchêne, C., 2007. A prototype generalisation system based on the multi-agent system paradigm. In: W. Mackaness, A. Ruas and L.T. Sarjakoski, eds. Generalisation of geographic information: cartographic modelling and applications. Amsterdam, The Netherlands: Elsevier, 269–283. doi:10.1016/B978-008045374-3/50016-8
  • Ruas, A. and Plazanet, C., 1996. Strategies for automated generalization. In: Proceedings of the 7th International Symposium on Spatial Data Handling, Delft, The Netherlands, 6.1–6.18.
  • Sayidov, A., Aliakbarian, M., and Weibel, R., 2020. Geological map generalization driven by size constraints. ISPRS International Journal of Geo-Information, 9, 284. doi:10.3390/ijgi9040284
  • Sayidov, A. and Weibel, R., 2016. Constraint-based approach in geological map generalization. In: 19th ICA Workshop on Generalisation and Multiple Representation, 14 June Helsinki (Finnland), Available from: https://www.zora.uzh.ch/id/eprint/127409s/
  • Sayidov, A. and Weibel, R., 2017. Automating geological mapping: a constraint-based approach. In: Proceedings of the CEUR (Central Europe) Workshop Proceedings, Leeds, UK. Available from: https://ceur-ws.org/Vol-2088/paper8.pdf
  • Sester, M., 2005. Optimization approaches for generalization and data abstraction. International Journal of Geographical Information Science, 19 (8–9), 871–897. doi:10.1080/13658810500161179
  • Skopeliti, A. and Tsoulos, L., 2001. Methodology of the assessment of generalization quality. In: Fourth ACI Workshop on Progress in Automated Map Generalization, Beijing, China.
  • Steiniger, S. and Weibel, R., 2005. A conceptual framework for automated generalization and its application to geologic and soil maps. In: Proceedings of the 22nd International Cartographic Conference, 11–16 July La Coruña, Spain.
  • Stoter, J., et al., 2009. Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems, 33 (5), 311–324. doi:10.1016/j.compenvurbsys.2009.06.002
  • Töpfer, F. and Pillewizer, W., 1966. The principles of selection. The Cartographic Journal, 3 (1), 10–16. doi:10.1179/caj.1966.3.1.10
  • Touya, G., 2010. A road network selection process based on data enrichment and structure detection. Transactions in GIS, 14, 595–614. doi:10.1111/j.1467-9671.2010.01215.x
  • Weibel, R. and Dutton, G.H., 1998. Constraint-based automated map generalization. In: 8th International Symposium on Spatial Data Handling, Columbia, UK: Taylor & Francis, 214–224.
  • Weibel, R., 1997. A typology of constraints to line simplification. In: M.-J. Kraak and M. Molenaar (eds.) Advances in GIS research II (Proceedings Seventh International Symposium on Spatial Data Handling), London: Taylor and Francis, 533–546.
  • Yan, H., et al., 2006. A quantitative direction description model for direction relations based on direction groups. Geoinformatica, 10 (2), 177–196. doi:10.1007/s10707-006-7578-1
  • Yan, H., 2015. Quantitative relations of spatial similarity degree and map scale change of individual linear objects in multi-scale map spaces. GeoCarto International, 30 (4), 472–482. doi:10.1080/10106049.2014.902115
  • Yan, H., 2019. Description approaches and automated generalization algorithms for groups of map objects. Singapore: Springer Nature Singapore President Ltd.
  • Yan, H. and Li, J., 2014. Spatial similarity relations in multi-scale map spaces. Zurich: Springer International Publishing Switzerland.
  • Yan, H.W. and Weibel, R., 2008. An algorithm for point cluster generalization based on the Voronoi diagram. Computers & GeoSciences, 34 (8), 939–954. doi:10.1016/j.cageo.2007.07.008
  • Yan, H., Weibel, R., and Yang, B., 2008. A multi-parameter approach to automated building grouping and generalization. Geoinformatica, 12 (1), 73–89. doi:10.1007/s10707-007-0020-5
  • Yu, L., et al., 2022. A fast generalization method of multibeam echo soundings for nautical charting. Journal of Geovisualization and Spatial Analysis, 6 (1), 2. doi:10.1007/s41651-021-00096-5
  • Zhang, Q., et al., 2002. Urban built-up land change detection with road density and spectral information from multi-temporal landsat TM data. International Journal of Remote Sensing, 23 (15), 3057–3078. doi:10.1080/01431160110104728

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.