156
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

HyMap imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, Morocco)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 81-102 | Received 10 Nov 2022, Accepted 16 Jan 2023, Published online: 01 Feb 2023

References

  • Abdelkareem, M. and Al-Arifi, N., 2021. Synergy of remote sensing data for exploring hydrothermal mineral resources using gis-based fuzzy logic approach. Remote Sensing, 13 (22), 4492. doi:10.3390/rs13224492
  • Adiri, Z., et al., 2016. Lithological mapping using Landsat 8 oli and terra aster multispectral data in the bas drâa inlier, Moroccan anti atlas. Journal of Applied Remote Sensing, 10 (1), 016005. doi:10.1117/1.JRS.10.016005
  • Adiri, Z., et al., 2020a. Mapping copper mineralization using eo-1 hyperion data fusion with Landsat 8 oli and sentinel-2a in Moroccan Anti-Atlas. Geocarto International, 35 (7), 781–800. doi:10.1080/10106049.2018.1544287
  • Adiri, Z., et al., 2020b. Mineralogical mapping using Landsat-8 oli, terra aster and sentinel-2a multispectral data in sidi flah-bouskour inlier, Moroccan Anti-Atlas. Journal of Spatial Science, 65 (1), 147–171. doi:10.1080/14498596.2018.1490213
  • Atif, Y., et al., 2021. Identifying hydrothermally alteRed Rocks using aster satellite imageries in eastern Anti-Atlas of Morocco: a case study from imiter silver mine. International Journal of Image and Data Fusion, 13 (4), 337–361.
  • Bachri, I., et al., 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from souk arbaa Sahel, sidi ifni inlier, western Anti-Atlas, Morocco. ISPRS International Journal of Geo-Information, 8 (6), 248. doi:10.3390/ijgi8060248
  • Bedini, E., 2011. Mineral mapping in the kap Simpson complex, central east Greenland, using hymap and aster remote sensing data. Journal Advances in Space Research, 47 (1), 60–73. doi:10.1016/j.asr.2010.08.021
  • Bedini, E., 2012. Mapping alteration minerals at malmbjerg molybdenum deposit, central east Greenland, by kohonen self-organizing maps and matched filter analysis of hymap data. International Journal of Remote Sensing, 33 (4), 939–961. doi:10.1080/01431161.2010.542202
  • Bedini, E. and Chen, J., 2020. Application of prisma satellite hyperspectral imagery to mineral alteration mapping at cuprite, Nevada, USA. Journal of Hyperspectral Remote Sensing, 10 (2), 87–94. doi:10.29150/jhrs.v10.2.p87-94
  • Bedini, E., van der Meer, F, and van Ruitenbeek, F. 2009. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. International Journal of Remote Sensing, 30 (2), 327–348. doi:10.1080/01431160802282854
  • Beiranvand Pour, A.S., et al., 2019. Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and worldview-3 multispectral satellite imagery for prospecting copper-gold mineralization in the northeastern inglefield mobile belt (imb), northwest Greenland. Remote Sensing, 11 (20), 2430. doi:10.3390/rs11202430
  • Benssaou, M. and Hamoumi, N., 2001. The western Anti-Atlas of Morocco: sedimentological and palaeogeographical formation studies in the early Cambrian. Journal of African Earth Sciences, 32 (3), 351–372. doi:10.1016/S0899-5362(01)90102-2
  • Beygi, S., et al., 2021. Alteration and structural features mapping in kacho-mesqal zone, central Iran using aster remote sensing data for porphyry copper exploration. International Journal of Image and Data Fusion, 12 (2), 155–175. doi:10.1080/19479832.2020.1838628
  • Boardman, J.W., 1998. Leveraging the high dimensionality of aviris data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filteringed.^eds. Summaries of the seventh JPL Airborne Geoscience Workshop, JPL Publication, Pasadena, CA, NASA Jet Propulsion Laboratory, 55–56.
  • Boardman, J.W. and Kruse, F.A., 2011. Analysis of imaging spectrometer data using $ n $-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Transactions on Geoscience and Remote Sensing, 49 (11), 4138–4152. doi:10.1109/TGRS.2011.2161585
  • Bolouki, S., et al., 2020. A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in ahar-arasbaran area, nw Iran. Remote Sensing, 12, 105. doi:10.3390/rs12010105
  • Bouladon, J. and Jouravsky, G., 1956. Les gîtes de manganese du maroc. Manganeso, 2, 217–248.
  • Bourque, H. 2016. The Anti-Atlas copper, a complex problem : synthesis of copper occurrences in the Bou Azzer-El Graara inlier and new data (Anti-Atlas, Morocco). Thesis.Université d'Orléans.
  • Boyer, C., et al., 1978. Le volcanisme calco-alcalin précambrien terminal de l'Anti-Atlas (Maroc) et ses altérations, Interprétation géodynamique. R. Acad. Sci. Paris, 287 (5), 427–430.
  • Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in gis. Amsterdam: Elsevier.
  • Carranza, E., 2009. Geochemical anomaly and mineral prospectivity mapping in gis. In: m. Hale (series editor). Handbook of exploration and environmental geochemistry. Vol. 11. Enschede, The Netherlands: Elsevier, 351.
  • Carrino, T.A., et al., 2018. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the chapi chiara gold prospect. International Journal of Applied Earth Observation and Geoinformation, 64, 287–300. doi:10.1016/j.jag.2017.05.004
  • Choubert, G., 1964. Histoire géologique du précambrien de l’anti-atlas. Maroc: Éditions du Service géologique du Maroc.
  • Choubert, G. and Faure-Muret, A., 1973. The Precambrian iron and manganese deposits of the Anti-Atlas. UNESCO Earth Sciences, 9, 115–124.
  • Clark, R.N., et al., 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95 (B8), 12653–12680. doi:10.1029/JB095iB08p12653
  • Clark, R.N., et al., 2003. Imaging spectroscopy: earth and planetary remote sensing with the USGS tetracorder and expert systems. Journal of Geophysical Research: Planets, 108 (E12). doi:10.1029/2002JE001847
  • Clark, R.N. and Rencz, A.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3 (11), 3–58.
  • Clauer, N., 1976. Géochimie isotopique du strontium des milieux sédimentaires. Application à la géochronologie de la couverture du craton ouest-africain. Strasbourg: Persée-Portail des revues scientifiques en SHS, 256.
  • Cocks, T., et al., 1998. The HyMap airborne hyperspectral sensor: The system, calibration and performance. Proceedings of the 1st EARSeL workshop on Imaging Spectroscopy, Zurich, Switzerland, 37–42.
  • Crosta, A.P. and Moore, J., 1990. Rehancement of Landsat thematic mapper imagery for residual soil mapping in sw Minas Gerais state, Brazil: a prospecting case history in greenstone belt terrained.^eds. Thematic conference on remote sensing for exploration geology. Methods, Integration, Solutions, 7, 1173–1187.
  • Crowley, J.K, Brickey, D.W, and Rowan, L.C. 1989. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29 (2), 121–134. doi:10.1016/0034-4257(89)90021-7
  • De Boissieu, F., et al., 2018. Regolith-geology mapping with support vector machine: a case study over weathered ni-bearing peridotites, New Caledonia. International Journal of Applied Earth Observation and Geoinformation, 64, 377–385. doi:10.1016/j.jag.2017.05.012
  • El Janati, M., 2019. Application of remotely sensed aster data in detecting alteration hosting cu, ag and au bearing mineralized zones in taghdout area, central Anti-Atlas of Morocco. Journal of African Earth Sciences, 151, 95–106. doi:10.1016/j.jafrearsci.2018.12.002
  • Elsass, P., 1975. Gîtes stratiformes de cuivre de l'Anti-Atlas marocain. Verlag nicht ermittelbar.
  • Enoh, M.A., Okeke, F.I., and Okeke, U.C., 2021. Automatic lineaments mapping and extraction in relationship to natural hydrocarbon seepage in ugwueme, south-eastern Nigeria. Geodesy and Cartography, 47 (1), 34–44. doi:10.3846/gac.2021.12099
  • Gasquet, D., et al., 2004. Polycyclic magmatism in the tagragra d’akka and kerdous–tafeltast inliers (western Anti-Atlas, Morocco). J Journal of African Earth Sciences, 39 (3–5), 267–275. doi:10.1016/j.jafrearsci.2004.07.062
  • Gasquet, D., et al., 2008. The pan-african belt. In: Continental evolution: the geology of Morocco. Berlin, Heidelberg: Springer, 33–64.
  • Ghosh, S., Sivasankar, T., and Anand, G., 2021. Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. International Journal of Remote Sensing, 42 (7), 2574–2593. doi:10.1080/01431161.2020.1856963
  • Goodarzi Mehr, S., et al., 2013. Using the mixture-tuned matched filtering method for lithological mapping with Landsat tm5 images. International Journal of Remote Sensing, 34 (24), 8803–8816. doi:10.1080/01431161.2013.853144
  • Gupta, R.P., et al., 2013. A simplified approach for interpreting principal component images. Advances in Remote Sensing, 02, 111–119. doi:10.4236/ars.2013.22015
  • Hajaj, S., El Harti, A., and Jellouli, A., 2022. Assessment of hyperspectral, multispectral, radar, and digital elevation model data in structural lineaments mapping: a case study from ameln valley shear zone, western Anti-Atlas Morocco. Remote Sensing Applications: Society and Environment, 27, 100819. doi:10.1016/j.rsase.2022.100819
  • Hashim, M., et al., 2013. Automatic lineament extraction in a heavily vegetated region using Landsat enhanced thematic mapper (etm+) imagery. Advances in Space Research, 51 (5), 874–890. doi:10.1016/j.asr.2012.10.004
  • Hassenforder, B., 1978. Evolution tectono-métamorphique du socle du kerdous (anti-atlas occidental, maroc) dans le cadre des orogenèses éburnéenne et pan-africaine. Sciences Géologiques, bulletins et mémoires, 31 (1), 21–31. doi:10.3406/sgeol.1978.1530
  • Hausknecht, P., 2005. Hymap data l2/3 processing. Journal Report for the Geological Survey of Namibia, 1, 48.
  • Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42 (3), 501–513. doi:10.1190/1.1440721
  • Hunt, G.R. and Ashley, R.P., 1979. Spectra of alteRed Rocks in the visible and near infrared. Economic Geology, 74 (7), 1613–1629. doi:10.2113/gsecongeo.74.7.1613
  • Huo, H., Ni, Z., Jiang, X., Zhou, P. and Liu, L. 2014. Mineral Mapping and Ore Prospecting with HyMap Data over Eastern Tien Shan, Xinjiang Uyghur Autonomous Region. Remote Sensing, 6 (12), 11829–11851. doi:10.3390/rs61211829
  • Jain, R. and Sharma, R.U., 2019. Airborne hyperspectral data for mineral mapping in southeastern Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation, 81, 137–145. doi:10.1016/j.jag.2019.05.007
  • Ji, L., Wang, L., and Geng, X., 2019. An automatic bad band pre-removal method for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (12), 4985–4994. doi:10.1109/JSTARS.2019.2944930
  • Kim, Y.-H., Choe, K.-U., and Ri, R.-K., 2019. Application of fuzzy logic and geometric average: a cu sulfide deposits potential mapping case study from kapsan basin, dpr Korea. Ore Geology Reviews, 107, 239–247. doi:10.1016/j.oregeorev.2019.02.026
  • Kruse, F.A., Boardman, J.W., and Huntington, J.F., 2003. Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41 (6), 1388–1400. doi:10.1109/TGRS.2003.812908
  • Leblanc, M. and Lancelot, J.R. 1980. Interprétation géodynamique du domaine pan-africain (Précambrien terminal) de l'Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences, 17 (1), 142–155. doi:10.1139/e80-012
  • Lillesand, T., Kiefer, R.W., and Chipman, J., 2015. Remote sensing and image interpretation. 5th. John Wiley & Sons.
  • Lindsay, M., et al., 2016. Reducing subjectivity in multi-commodity mineral prospectivity analyses: modelling the west Kimberley, Australia. Ore Geology Reviews, 76, 395–413. doi:10.1016/j.oregeorev.2015.03.022
  • Ma, Y., et al., 2020. Application of knowledge-driven methods for mineral prospectivity mapping of polymetallic sulfide deposits in the southwest Indian ridge between 46° and 52° e. Minerals, 10 (11), 970. doi:10.3390/min10110970
  • Maddi, O., et al., 2011. La mine d’agjgal au sud de kerdous; considérations sur les gîtes stratoïdes de cuivre et argent de l’anti atlas occidental et central. Les nouveaux guides géologiques et miniers du Maroc: Les principales mines du Maroc: Notes et Mémoires du Service Géologique du Maroc, 9, 151–156.
  • Mars, J.C. and Rowan, L.C., 2011. Aster spectral analysis and lithologic mapping of the khanneshin carbonatite volcano, Afghanistan. Geosphere, 7 (1), 276–289. doi:10.1130/GES00630.1
  • Mohamed Taha, A.M., et al., 2022. Investigating the capabilities of various multispectral remote sensors data to map mineral prospectivity based on random forest predictive model: a case study for gold deposits in hamissana area, ne Sudan. Minerals, 13 (1), 49. doi:10.3390/min13010049
  • Moon, C.J., Whateley, M.K., and Evans, A.M., 2006. Introduction to mineral exploration. New York: Blackwell publishing.
  • Moradpour, H., et al., 2022. Landsat-7 and ASTER remote sensing satellite imagery for identification of iron skarn mineralization in metamorphic regions. Geocarto International, 37 (7), 1971–1998. doi:10.1080/10106049.2020.1810327
  • Nouri, T., 2022. Detection of potential gold mineralization areas using mf-fuzzy approach on multispectral data. Geocarto International, 17, 5017–5040.
  • Ouchchen, M., et al., 2021. Structural interpretation of the igherm region (western anti atlas, Morocco) from an aeromagnetic analysis: implications for copper exploration. Journal of African Earth Sciences, 176, 104140. doi:10.1016/j.jafrearsci.2021.104140
  • Pouit, G., 1966. Paléogéographie et répartition des minéralisations stratiformes de cuivre dans l'Anti-Atlas occidental (Maroc). Chronique des Mines et de la Recherche minière, 34 (356), 279–289.
  • Pour, A.B., et al., 2018a. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of aster remote sensing data. Geocarto International, 33 (12), 1281–1306. doi:10.1080/10106049.2017.1347207
  • Pour, A.B., et al., 2018b. Application of multi-sensor satellite data for exploration of zn–pb sulfide mineralization in the franklinian basin, north Greenland. Remote Sensing, 10 (8), 1186. doi:10.3390/rs10081186
  • Pour, A.B., et al., 2019. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and aster satellite data: north-eastern graham land, antarctic peninsula. Ore Geology Reviews, 108, 112–133. doi:10.1016/j.oregeorev.2017.07.018
  • Pour, A.B., et al., 2020. Identification of phyllosilicates in the Antarctic environment using aster satellite data: case study from the Mesa range, Campbell and Priestley glaciers, northern Victoria land. Remote Sensing, 13 (1), 38. doi:10.3390/rs13010038
  • Pour, A.B., et al., 2021. Editorial for the special issue: multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas. Mdpi, 13, 519. doi:10.3390/rs13030519
  • Pour, A.B. and Hashim, M., 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using aster data, se Iran. Journal of Asian Earth Sciences, 42 (6), 1309–1323. doi:10.1016/j.jseaes.2011.07.017
  • Pour, A.B. and Hashim, M., 2012. Identifying areas of high economic-potential copper mineralization using aster data in the urumieh–dokhtar volcanic belt, Iran. Advances in Space Research, 49 (4), 753–769. doi:10.1016/j.asr.2011.11.028
  • Pour, A.B. and Hashim, M., 2015. Hydrothermal alteration mapping from Landsat-8 data, sar cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9 (2), 155–166. doi:10.1016/j.jtusci.2014.11.008
  • Rajan Girija, R. and Mayappan, S., 2019. Mapping of mineral resources and lithological units: a review of remote sensing techniques. International Journal of Image and Data Fusion, 10 (2), 79–106. doi:10.1080/19479832.2019.1589585
  • Rajesh, H., 2004. Application of remote sensing and gis in mineral resource mapping-an overview. Journal of Mineralogical and Petrological Sciences, 99 (3), 83–103. doi:10.2465/jmps.99.83
  • Richter, R. and Schläpfer, D., 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 23 (13), 2631–2649. doi:10.1080/01431160110115834
  • Sabins F F. 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14 (3–4), 157–183. doi:10.1016/S0169-1368(99)00007-4
  • Safari, M., Maghsoudi, A., and Pour, A.B., 2018. Application of Landsat-8 and aster satellite remote sensing data for porphyry copper exploration: a case study from shahr-e-babak, Kerman, south of Iran. Geocarto International, 33 (11), 1186–1201. doi:10.1080/10106049.2017.1334834
  • Salles, R.D., et al., 2017. Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia. Journal of Geochemical Exploration, 179, 36–50. doi:10.1016/j.gexplo.2016.07.002
  • Sekandari, M., et al., 2020. Aster and worldview-3 satellite data for mapping lithology and alteration minerals associated with pb-zn mineralization. Geocarto International, 37 (6) , 1–31.
  • Skakni, O., et al., 2022. Integrating remote sensing, gis and in-situ data for structural mapping over a part of the nw rif belt, Morocco. Geocarto International, 37 (11), 3265–3292. doi:10.1080/10106049.2020.1852611
  • Soulaimani, A. and Ouanaimi, H., 2011. Anti-Atlas et haut atlas, circuit occidental. Nouveaux guides géologiques et miniers du Maroc, 3, 9–72.
  • Thomas, R.J., et al., 2004. A new lithostratigraphic framework for the Anti-Atlas orogen, Morocco. Journal of African Earth Sciences, 39 (3–5), 217–226. doi:10.1016/j.jafrearsci.2004.07.046
  • Wambo, J.D.T., et al., 2020. Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and aster remote sensing data: a case study of the ngoura-colomines goldfield, eastern Cameroon. Ore Geology Reviews, 122, 103530. doi:10.1016/j.oregeorev.2020.103530
  • White, N.C. and Hedenquist, J.W., 1995. Epithermal gold deposits: styles, characteristics and exploration. SEG Discovery, (23), 1–13. doi:10.5382/SEGnews.1995-23.fea
  • Zadeh, L. 1965. Fuzzy sets. Information and Control, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.