160
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A time series decomposition approach to detect coal fires in parts of the Gondwana coalfields of India from VIIRS data

ORCID Icon, & ORCID Icon
Pages 121-136 | Received 21 Aug 2022, Accepted 15 Feb 2023, Published online: 27 Feb 2023

References

  • Ben Abbes, A., et al., 2018. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. European Journal of Remote Sensing, 51 (1), 607–615. doi:10.1080/22797254.2018.1465360
  • BP, 2021. Statistical review of world energy 2021. 70th ed. London: BP plc.
  • Chatterjee, R.S., 2006. Coal fire mapping from satellite thermal IR data – a case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (2), 113–128. doi:10.1016/j.isprsjprs.2005.12.002
  • Chatterjee, R.S., et al., 2015. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. Journal of Earth System Science, 124 (6), 1359–1376. doi:10.1007/s12040-015-0606-5
  • Chatterjee, R.S., et al., 2017. Retrieval of land surface temperature (LST) from Landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. International Journal of Applied Earth Observation and Geoinformation, 58, 264–277. doi:10.1016/j.jag.2017.02.017
  • Cleveland, R.B., et al., 1990. STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6 (1), 3–73.
  • Cracknell, A.P. and Mansor, S.B., 1992. Detection of sub-surface coal fires using Landsat Thematic Mapper data. International Archives of Photogrammetry and Remote Sensing, 29 (B7), 750–753.
  • Finkelman, R.B., 2004. Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59 (1–2), 19–24. doi:10.1016/j.coal.2003.11.002
  • GSI, 2018. Indian coal and lignite resources-2018. Kolkata, India: Geological Survey of India.
  • Guha, A., Kumar, K.V., and Kamaraju, M.V.V., 2008. A satellite-based study of coal fires and open-cast mining activity in Raniganj Coalfield, West Bengal. Current Science, 95 (11), 1603–1607.
  • Hecker, C., Kuenzer, C., and Zhang, J., 2007. Remote-sensing–based coal-fire detection with low-resolution MODIS data. In: G.B. Stracher, ed. Geology of coal fires: case studies from around the world. Boulder, CO: Geological Society of America, Vol. 18, 229–238.
  • Hulley, G.C., Freepartner, R.J., and Islam, T., 2017. Visible infrared imaging radiometer suite (VIIRS) land surface temperature and emissivity product (VNP21) user guide collection 1. Pasadena, California: California Institute of Technology.
  • Islam, T., et al., 2017. A physics-based algorithm for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing, 55 (1), 563–576. doi:10.1109/TGRS.2016.2611566
  • Jamali, S., et al., 2015. Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 156, 182–195. doi:10.1016/j.rse.2014.09.010
  • Jiang, B., et al., 2010. Modeling MODIS LAI time series using three statistical methods. Remote Sensing of Environment, 114 (7), 1432–1444. doi:10.1016/j.rse.2010.01.026
  • Kolker, A., et al., 2009. Emissions from coal fires and their impact on the environment. Reston, VA: U.S. Geological Survey Fact Sheet 2009–3084.
  • Kuenzer, C., et al., 2007. Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 28 (20), 4561–4585. doi:10.1080/01431160701250432
  • Kuenzer, C., et al., 2013. Thermal infrared remote sensing of surface and underground coal fires. In: C. Kuenzer and S. Dech, eds. Environment. Remote sensing and digital image processing. Dordrecht: Springer Netherlands, 429–451.
  • Le Duy, N., et al., 2021. Groundwater dynamics in the Vietnamese Mekong Delta: trends, memory effects, and response times. Journal of Hydrology: Regional Studies, 33 (May 2020), 100746.
  • Lu, H., et al., 2003. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sensing of Environment, 86 (1), 1–18. doi:10.1016/S0034-4257(03)00054-3
  • Martha, T.R., et al., 2010. Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data. International Journal of Remote Sensing, 31 (12), 3243–3262. doi:10.1080/01431160903159340
  • Meng, Q., et al., 2018. Characterising spatial and temporal trends of surface urban heat island effect in an urban main built-up area: a 12-year case study in Beijing, China. Remote Sensing of Environment, 204 (September), 826–837. doi:10.1016/j.rse.2017.09.019
  • Michalski, S.R., Custer, E.S., and Munshi, P.L., 1997. Investigation of the Jharia coalfield mine fires - India. In: 14th Annual Meeting of the American Society for Surface Mining and Reclamation. Austin, TX, 211–223.
  • Misra, B.K. and Singh, B.D., 1994. Susceptibility to spontaneous combustion of Indian coals and lignites: an organic petrographic autopsy. International Journal of Coal Geology, 25 (3–4), 265–286. doi:10.1016/0166-5162(94)90019-1
  • Mujawdiya, R., et al., 2019. Detection of bad data images in long-term MODIS land surface temperature image time series using statistical outlier detection methods. Journal of Applied Remote Sensing, 13 (4), 048504. doi:10.1117/1.JRS.13.048504
  • Mujawdiya, R., Chatterjee, R.S., and Kumar, D., 2022. MODIS land surface temperature time series decomposition for detecting and characterising temporal intensity variations of coal fire induced thermal anomalies in Jharia coalfield, India. Geocarto International, 37 (8), 2160–2174. doi:10.1080/10106049.2020.1818853
  • Pandey, J., et al., 2017. Temporal transition analysis of coal mine fire of Jharia coalfield, India, using Landsat satellite imageries. Environmental Earth Sciences, 76 (12), 1–13. doi:10.1007/s12665-017-6765-8
  • Prakash, A., et al., 1995. Surface thermal anomalies associated with underground fires in Jharia coal mines, India. International Journal of Remote Sensing, 16 (12), 2105–2109. doi:10.1080/01431169508954544
  • R Core Team, 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Roy, P., Guha, A., and Vinod Kumar, K., 2015. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: jharia coal field, India. International Journal of Applied Earth Observation and Geoinformation, 39, 120–127. doi:10.1016/j.jag.2015.03.009
  • Sahu, H.B. and Pal, B.K., 1998. Critical Investigations on fire in India coal mines. In: National Seminar on Outlook for Fossil Fuels & Non Metallic Mining and Mineral Based Industries. Chennai, India, 142–145.
  • Singh, N., et al., 2021. Spatio-temporal variation and propagation direction of coal fire in Jharia Coalfield, India by satellite-based multi-temporal night-time land surface temperature imaging. International Journal of Mining Science and Technology, 31 (5), 765–778. doi:10.1016/j.ijmst.2021.07.002
  • Singh, R.P. and Yadav, R.N., 1995. Prediction of subsidence due to coal mining in Raniganj Coalfield, West Bengal, India. Engineering Geology, 39 (1–2), 103–111. doi:10.1016/0013-7952(94)00062-7
  • Syed, T.H., Riyas, M.J., and Kuenzer, C., 2018. Remote sensing of coal fires in India: a review. Earth-Science Reviews, 187 (August), 338–355. doi:10.1016/j.earscirev.2018.10.009
  • Verbesselt, J., et al., 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114 (1), 106–115. doi:10.1016/j.rse.2009.08.014
  • Yang, M., et al., 2021. The Impact of COVID-19 on crime: a spatial temporal analysis in Chicago. ISPRS International Journal of Geo-Information, 10 (3), 152. doi:10.3390/ijgi10030152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.