289
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Development of flood susceptibility map using a GIS-based AHP approach: a novel case study on Idukki district, India

&
Pages 409-442 | Received 14 Mar 2023, Accepted 09 Jul 2023, Published online: 02 Aug 2023

References

  • Abbaszadeh, P., (2016). Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique. Water Resour Manage, 30 (5), 1701–1721. doi:10.1007/s11269-016-1246-5.
  • Abdel Hamid, H.T., 2020. Environmental sensitivity of flash flood hazard using geospatial techniques. Global Journal of Environmental Science and Management, 6 (1), 31–46.
  • Abijith, D., et al., 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch, 3, 1–14. doi:10.1016/j.hydres.2020.02.002.
  • Abijith, D. and Saravanan, S., 2021. Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environmental Science and Pollution Research, 29, 86055–86067.
  • Arabameri, A., et al., 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology, 587, 125007. doi:10.1016/j.jhydrol.2020.125007.
  • Aslam, M., et al., 2022. Adaptive machine learning based distributed denial-of-services attacks detection and mitigation system for SDN-enabled IoT. Sensors, 22 (7), 2697. doi:10.3390/s22072697.
  • Band, S.S., et al., 2020. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sensing, 12 (21), 3568. doi:10.3390/rs12213568.
  • Benito, G., et al., 2010. The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain. Global and Planetary Change, 70 (1–4), 53–63. doi:10.1016/j.gloplacha.2009.11.007.
  • Bradshaw, C., et al., 2007. Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biology, 13 (11), 2379–2395. doi:10.1111/j.1365-2486.2007.01446.x.
  • Bronstert, A., 2003. Floods and climate change: interactions and impacts. Risk Analysis, 23 (3), 545–557. doi:10.1111/1539-6924.00335.
  • Bui, D.T., et al., 2019. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179, 184–196. doi:10.1016/j.catena.2019.04.009
  • Chakraborty, S. and Mukhopadhyay, S., 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Natural Hazards, 99 (1), 247–274. doi:10.1007/s11069-019-03737-7.
  • Charlton, R., et al., 2006. Assessing the impact of climate change on water supply and flood hazard in Ireland using statistical downscaling and hydrological modelling techniques. Climatic Change, 74 (4), 475–491. doi:10.1007/s10584-006-0472-x.
  • Chen, J., et al., 2019. A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster: a case study of the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 17 (1), 49. doi:10.3390/ijerph17010049.
  • Chen, Y.-R., Yeh, C.-H., and Yu, B., 2011. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59 (3), 1261–1276. doi:10.1007/s11069-011-9831-7.
  • Danandeh Mehr, A. and Kahya, E., 2017. A pareto-optimal moving average multigene genetic programming model for daily streamflow prediction. Journal of Hydrology, 549, 603–615. doi:10.1016/j.jhydrol.2017.04.045.
  • Danumah, J.H., et al., 2016. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenvironmental Disasters, 3 (1), 10. doi:10.1186/s40677-016-0044-y.
  • Das, S., 2017. Signatures of morphotectonic activities in western upland Maharashtra and Konkan region.
  • Das, S., 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arabian Journal of Geosciences, 11 (19), 576. doi:10.1007/s12517-018-3933-4.
  • Das, S., 2019. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14, 60–74.
  • Das, S., 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379. doi:10.1016/j.rsase.2020.100379.
  • Das, S. and Gupta, A., 2021. Multi-criteria decision based geospatial mapping of flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha River, India. Geoscience Frontiers, 12 (5), 101206. doi:10.1016/j.gsf.2021.101206.
  • Dodangeh, E., et al., 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of the Total Environment, 705, 135983. doi:10.1016/j.scitotenv.2019.135983.
  • Dottori, F., et al., 2018. Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change. doi:10.1038/s41558-018-0257-z.
  • Dou, X., et al., 2017. Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China. Stochastic Environmental Research and Risk Assessment, 32 (4), 1131–1146. doi:10.1007/s00477-017-1429-5.
  • El Jazouli, A., Barakat, A., and Khellouk, R., 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6 (1), 3. doi:10.1186/s40677-019-0119-7.
  • Farhan Ul Moazzam, M., et al., 2018. Analysis of flood susceptibility and zonation for risk management using frequency ratio model in District Charsadda, Pakistan. International Journal of Environment and Geoinformatics, 5 (2), 140–153. doi:10.30897/ijegeo.407260.
  • Gabriels, K., Willems, P., and Van Orshoven, J., 2022. A comparative flood damage and risk impact assessment of land use changes. Natural Hazards and Earth System Sciences, 22 (2), 395–410. doi:10.5194/nhess-22-395-2022
  • George, S.L., et al., 2022. A multi-data geospatial approach for understanding flood risk in the coastal plains of Tamil Nadu, India. Earth, 3 (1), 383–400. doi:10.3390/earth3010023.
  • Ghosh, A. and Kar, S., 2018. Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94. doi:10.1007/s11069-018-3392-y.
  • Giovannettone, J., et al., 2020. Spatial analysis of flood susceptibility throughout Currituck County, North Carolina. Journal of Hydrologic Engineering, 25 (8), 05020021. doi:10.1061/(ASCE)HE.1943-5584.0001948.
  • GSI, 2006. Geological survey of India: district resource map of Kerala. https://www.gsi.gov.in/webcenter/portal/OCBIS
  • Gupta, L. and Dixit, J., 2022. A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level. Geocarto International, 37 (26), 11867–11899. doi:10.1080/10106049.2022.2060329.
  • Hadipour, V., Vafaie, F., and Deilami, K., 2020. Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis approach. Water, 12 (9), 2379. doi:10.3390/w12092379.
  • Hamlat, A., et al., 2021. Flood hazard areas assessment at a regional scale in M’zi wadi basin, Algeria. Journal of African Earth Sciences, 182, 104281. doi:10.1016/j.jafrearsci.2021.104281.
  • Hong, H., et al., 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment, 621, 1124–1141. doi:10.1016/j.scitotenv.2017.10.114.
  • Houze, R.A., et al., 2017. Multiscale aspects of the storm producing the June 2013 Flooding in Uttarakhand, India. Monthly Weather Review, 145 (11), 4447–4466. doi:10.1175/MWR-D-17-0004.1.
  • Hsu, T.-W., et al., 2017. A study on coastal flooding and risk assessment under climate change in the Mid-western coast of Taiwan. Water, 9 (6), 390. doi:10.3390/w9060390.
  • Hunt, K.M.R. and Menon, A., 2020. The 2018 Kerala floods: a climate change perspective. Climate Dynamics, 54 (3–4), 2433–2446. doi:10.1007/s00382-020-05123-7.
  • Jacinth Jennifer, J. and Saravanan, S., 2022. Artificial neural network and sensitivity analysis in the landslide susceptibility mapping of Idukki district, India. Geocarto International, 37 (19), 5693–5715. doi:10.1080/10106049.2021.1923831.
  • Jacinth Jennifer, J., Saravanan, S., and Abijith, D., 2022. Integration of SAR and multi-spectral imagery in flood inundation mapping – a case study on Kerala floods 2018Integration of SAR and multi-spectral imagery in flood inundation mapping – a case study on Kerala floods 2018. ISH Journal of Hydraulic Engineering, 28 (sup1), 480–490. doi:10.1080/09715010.2020.1791265.
  • Kazakis, N., Kougias, I., and Patsialis, T., 2015. Assessment of flood hazard areas at a regional scale 563 using an index-based approach and analytical hierarchy process: application in Rhodope–Evros564 region, Greece. Science of the Total Environment, 538, 555–563. doi:10.1016/j.scitotenv.2015.08.055
  • Khanday, Z. A. and Sujatha, K., 2022. Flood hazard mapping and assessment using geospatial techniques and AHP model based hazard zonation -a case study of coastal Taluks of Cuddalore District, Tamil Nadu, India. Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of Xi'an Shiyou University, 18, 185–204.
  • Koks, E.E., et al., 2015. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy, 47, 42–52. doi:10.1016/j.envsci.2014.10.013.
  • Kraus, C.N., et al., 2019. Unraveling flooding dynamics and nutrients’ controls upon phytoplankton functional dynamics in amazonian floodplain lakes. Water, 11 (1), 154. doi:10.3390/w11010154.
  • Krishnaraj, A. and Honnasiddaiah, R., 2022. Remote sensing and machine learning based framework for the assessment of spatio-temporal water quality in the Middle Ganga Basin. Environmental Science and Pollution Research, 29 (43), 64939–64958. doi:10.1007/s11356-022-20386-9.
  • Kron, W., 2005. Flood risk = Hazard • values • vulnerability. Water International, 30 (1), 58–68. doi:10.1080/02508060508691837.
  • Kumar, S., 2013. Rapidly assessing flood damage in Uttarakhand, India. World Bank, 97332. http://documents.worldbank.org/curated/en/724891468188654600/Rapidly-assessing-flood-damage-in-Uttarakhand-India
  • Lei, X., et al., 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing, 12 (15), 2478. doi:10.3390/rs12152478.
  • Lim, J. and Lee, K., 2017. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information system. Environmental Monitoring and Assessment, 189 (3), 96. doi:10.1007/s10661-017-5811-z.
  • Liu, Y., et al., 2020. Fine-scale coastal storm surge disaster vulnerability and risk assessment model: a case study of Laizhou Bay, China. Remote Sensing, 12 (8), 1301. doi:10.3390/rs12081301.
  • Lyubimova, T., et al., 2016. The risk of river pollution due to washout from contaminated floodplain water bodies during periods of high magnitude floods. Journal of Hydrology, 534, 579–589. doi:10.1016/j.jhydrol.2016.01.030.
  • Mahato, S., et al., 2021. Field based index of flood vulnerability (IFV): a new validation technique for flood susceptible models. Geoscience Frontiers, 12 (5), 101175. doi:10.1016/j.gsf.2021.101175.
  • Mahmoud, S.H. and Gan, T.Y., 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216–229. doi:10.1016/j.jclepro.2018.06.047.
  • Mandal, B. and Mandal, S., 2018. Analytical hierarchy process (AHP) based landslide susceptibility mapping of Lish River basin of Eastern Darjeeling Himalaya, India. Advances in Space Research, 62 (11), 3114–3132. doi:10.1016/j.asr.2018.08.008.
  • Meles, M.B., et al., 2020. Wetness index based on landscape position and topography (WILT):Modifying TWI to reflect landscape position. Journal of Environmental Management, 255, 109863. doi:10.1016/j.jenvman.2019.109863.
  • Moghaddam, D.D., Pourghasemi, H.R., and Rahmati, O., 2019. Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SWIran: comparison of different advanced modeling approaches. In: Natural Hazards GIS-based spatial modeling using data mining techniques. Cham: Springer, 59–78.
  • NBSS, 1996. Soil map of Kerala. National Bureau of Soil Science and Land Use Planning. https://nbsslup.icar.gov.in/
  • Neumann, B., et al., 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One, 10 (3), e0118571. (L. Kumar, ed.). doi:10.1371/journal.pone.0118571.
  • Nones, M., 2019. Dealing with sediment transport in flood risk management. Acta Geophysica, 67 (2), 677–685. doi:10.1007/s11600-019-00273-7.
  • Nourani, V., et al., 2014. A new hybrid algorithm for rainfall-runoff process modelling based on the wavelet transform and genetic fuzzy system. Journal of Hydroinformatics, 16 (5), 1004–1024. doi:10.2166/hydro.2014.035.
  • Pal, S. and Ziaul, S., 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian Journal of Remote Sensing and Space Sciences, 20 (1), 125–145.
  • Paranunzio, R., et al., 2022. Assessing coastal flood risk in a changing climate for Dublin, Ireland. Journal of Marine Science and Engineering, 10 (11), 1715. doi:10.3390/jmse10111715.
  • Parthasarathy, K.S.S., et al., 2021. Chapter 17 - Assessing the impact of 2018 tropical rainfall and the consecutive flood-related damages for the state of Kerala, India. In: Disaster resilience and sustainability adaptation for sustainable development. Elsevier, 379–395.
  • Pathan, A.I., et al., 2022. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment, 194 (7), 509. doi:10.1007/s10661-022-10111-x.
  • Paul, G.C., Saha, S., and Hembram, T.K., 2019. Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi Sub-basin of Ganga-Bhagirathi River and their comparison. Remote Sensing in Earth Systems Sciences, 2 (2–3), 120–146. doi:10.1007/s41976-019-00018-6.
  • Pourali, S.H., et al., 2016. Topography wetness index application in flood-risk-based land use planning. Applied Spatial Analysis and Policy, 9 (1), 39–54. doi:10.1007/s12061-014-9130-2.
  • Pradhan, B. and Youssef, A.M., 2011. A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management, 4 (3), 189–202. doi:10.1111/j.1753-318X.2011.01103.x.
  • Pramanick, N., et al., 2022. SAR based flood risk analysis: a case study Kerala flood 2018. Advances in Space Research, 69 (4), 1915–1929. doi:10.1016/j.asr.2021.07.003.
  • Rafiei-Sardooi, E., et al., 2021. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. International Journal of Disaster Risk Reduction, 66, 102614. doi:10.1016/j.ijdrr.2021.102614.
  • Rehman, A., et al., 2021. Formal modeling, proving, and model checking of a flood warning, monitoring, and rescue system-of-systems. Scientific Programming, 2021, 1–17. doi:10.1155/2021/6685978.
  • Saaty, R.W., 1987. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. doi:10.1016/0270-0255(87)90473-8.
  • Saaty, T.L., 1980. The analytic hierarchy process: planning, priority setting, resources allocation. New York: McGraw.
  • Saha, A., et al., 2021. Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water, 13 (2), 241. doi:10.3390/w13020241.
  • Saha, A.K. and Agrawal, S., 2020. Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study. Nanotechnology for Environmental Engineering, 5 (2), 11. doi:10.1007/s41204-020-00073-1.
  • Sampson, C.C., et al., 2015. A high-resolution global flood hazard model. Water Resources Research, 51 (9), 7358–7381. doi:10.1002/2015WR016954.
  • Saravanan, S. and Abijith, D., 2022. Flood susceptibility mapping of Northeast coastal districts of Tamil Nadu India using multi-source geospatial data and machine learning techniques. Geocarto International, 37, 1–30.
  • Seejata, K., et al., 2018. Assessment of flood hazard areas using analytical hierarchy process over the Lower Yom Basin, Sukhothai Province. Procedia Engineering, 212, 340–347. doi:10.1016/j.proeng.2018.01.044.
  • Sholihah, Q., et al., 2020. The analysis of the causes of flood disasters and their impacts in the perspective of environmental law. IOP Conference Series: Earth and Environmental Science, 437 (1), 012056. doi:10.1088/1755-1315/437/1/012056.
  • Siam, Z.S., et al., 2022. National-scale flood risk assessment using GIS and remote sensing-based hybridized deep neural network and fuzzy analytic hierarchy process models: a case of Bangladesh. Geocarto International, 37 (26), 12119–12148. doi:10.1080/10106049.2022.2063411.
  • Singh, S., 2019. Analytical study of Kerala floods. International Journal for Research in Applied Science & Engineering Technology, 7 (VI), 1851–1855.
  • Stevaux, J.C., et al., 2020. Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology, 350, 106906. doi:10.1016/j.geomorph.2019.106906.
  • Sturzenegger, M., et al., 2019, June. Semi-automated regional scale debris-flow and debris-flood susceptibility mapping based on digital elevation model metrics and Flow-R software. In: Association of environmental and engineering geologists; special publication 28. Colorado, USA: Colorado School of Mines. Arthur Lakes Library.
  • Surwase, T., et al., 2019. Novel technique for developing flood hazard map by using AHP: a study on part of Mahanadi River in Odisha. SN Applied Sciences, 1 (10), n.p. doi:10.1007/s42452-019-1233-6.
  • Suthirat, K., et al., 2020. AHP-GIS analysis for flood hazard assessment of the communities nearby the world heritage site on Ayutthaya Island, Thailand. International Journal of Disaster Risk Reduction. doi:10.1016/j.ijdrr.2020.101612.
  • Swain, K.C., Singha, C., and Nayak, L., 2020. Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9 (12), 720. doi:10.3390/ijgi9120720.
  • Talukdar, S., et al., 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 34 (12), 2277–2300. doi:10.1007/s00477-020-01862-5.
  • Tehrany, M.S., et al., 2017. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8 (2), 1538–1561. doi:10.1080/19475705.2017.1362038.
  • Tehrany, M.S., Kumar, L., and Shabani, F., 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: brisbane, Australia. PeerJ, 7, e7653. doi:10.7717/peerj.7653.
  • Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. doi:10.1016/j.jhydrol.2013.09.034.
  • Thomas, A., et al., 2021. Landslide susceptibility Zonation of Idukki district using GIS in the aftermath of 2018 Kerala floods and landslides: a comparison of AHP and frequency ratio methods. Journal of Geovisualization and Spatial Analysis, 5. doi:10.1007/s41651-021-00090-x.
  • Tran, T.A., et al., 2017. Application of multi-parametric AHP for flood hazard Zonation in coastal lowland area of central Vietnam. International Journal of Geoinformatics, 13 (1), 23–34.
  • Van Oldenborgh, G.J., et al., 2016. The heavy precipitation event of December 2015 in Chennai, India. Bulletin of the American Meteorological Society, 97 (12), S87–S91. doi:10.1175/BAMS-D-16-0129.1.
  • Veerappan, R. and Sayed, S.I., 2020. Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of greater Mumbai, Maharashtra, India. Geocarto International. doi:10.1080/10106049.2020.1730448.
  • Vimal, M., et al., 2018. The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrology and Earth System Sciences. doi:10.5194/hess-2018-480.
  • Wallemacq, P. and Guha-Sapir, D., 2015. The human cost of natural disasters 2015: a global prespective. Centre for Research on the Epidemiology of Disasters CRED.
  • Wu, L., He, Y., and Ma, X., 2020. Can soil conservation practices reshape the relationship between sediment yield and slope gradient? Ecological Engineering, 142, 105630. doi:10.1016/j.ecoleng.2019.105630.
  • Xu, K., et al., 2021. The importance of digital elevation model selection in flood simulation and a proposed method to reduce DEM errors: a case study in Shanghai. International Journal of Disaster Risk Science, 12 (6), 890–902. doi:10.1007/s13753-021-00377-z.
  • Young, J.C., et al., 2022. Social sensing of flood impacts in India: a case study of Kerala 2018. International Journal of Disaster Risk Reduction, 74, 102908. doi:10.1016/j.ijdrr.2022.102908.
  • Zhang, G., et al., 2017. Flood effect on groundwater recharge on a typical silt loam soil. Water, 9 (7), 523. doi:10.3390/w9070523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.