66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Maximizing grid-on-grid transformation performance with regularized regression techniques for integrating multi-source geospatial data

ORCID Icon, &
Pages 467-491 | Received 18 Mar 2023, Accepted 06 Aug 2023, Published online: 19 Sep 2023

References

  • Abbey, D.A. and Featherstone, W.E., 2020. Comparative review of molodensky–Badekas and Burša–wolf methods for coordinate transformation. Journal of Surveying Engineering, 146 (3), 04020010. doi:10.1061/(ASCE)SU.1943-5428.0000319
  • Abdalla, A. and Mustafa, M., 2021. Horizontal displacement of control points using GNSS differential positioning and network adjustment. Measurement, 174, 108965. doi:10.1016/j.measurement.2021.108965
  • Amiri-Simkooei, A. and Jazaeri, S., 2012. Weighted total least squares formulated by standard least squares theory. Journal of Geodetic Science, 2 (2), 113–124. doi:10.2478/v10156-011-0036-5
  • Ampatzidis, D. and Melachroinos, S., 2017. The connection of an old geodetic datum with a new one using least squares collocation: the Greek case. Contributions to Geophysics and Geodesy, 47 (1), 39–51. doi:10.1515/congeo-2017-0003
  • Cai, J., 2000. The systematic analysis of the transformation between the German geodetic reference system (DHDN, DHHN) and the ETRF system (DREF91). Earth, Planets and Space, 52 (11), 947–952. doi:10.1186/BF03352310
  • Casella, G., et al., 2010. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5 (2), 369–411. doi:10.1214/10-BA607
  • Civicioglu, P., 2012. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229–247. doi:10.1016/j.cageo.2011.12.011
  • Dąbrowski, P.S., et al., 2021. Integration of multi-source geospatial data from GNSS receivers, terrestrial laser scanners, and unmanned aerial vehicles. Canadian Journal of Remote Sensing, 47 (4), 621–634. doi:10.1080/07038992.2021.1922879
  • Duzan, H. and Shariff, N.S.B.M., 2015. Ridge regression for solving the multicollinearity problem: review of methods and models. Journal of Applied Science, 15 (3), 392–404. doi:10.3923/jas.2015.392.404
  • Elshambaky, H.T., Kaloop, M.R., and Hu, J.W., 2018. A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach. Arabian Journal of Geosciences, 11 (6), 1–14. doi:10.1007/s12517-018-3441-6
  • Fazilova, D., 2017. The review and development of a modern GNSS network and datum in Uzbekistan. Geodesy and Geodynamics, 8 (3), 187–192. doi:10.1016/j.geog.2017.02.006
  • Fazilova, D., 2022. Uzbekistan’s coordinate system transformation from CS42 to WGS84 using distortion grid model. Geodesy and Geodynamics, 13 (1), 24–30. doi:10.1016/j.geog.2021.10.001
  • Felus, Y.A. and Burtch, R.C., 2009. On symmetrical three-dimensional datum conversion. GPS Solutions, 13 (1), 65–74. doi:10.1007/s10291-008-0100-5
  • Grant, D.B. and Pearse, M. 1995. Proposal for a dynamic national geodetic datum for New Zealand. In: IUGG General Assembly, 2-14 July Boulder, Colorado, USA.
  • Greenfeld, J.S., 1997. Least squares weighted coordinate transformation formulas and their applications. Journal of Surveying Engineering, 123 (4), 147–161. doi:10.1061/(ASCE)0733-9453(1997)123:4(147)
  • Griol, D. and Molina, J.M., 2016. A framework for improving error detection and correction in spoken dialog systems. Soft Computing, 20 (11), 4229–4241. doi:10.1007/s00500-016-2290-z
  • Habib, M., 2008. Proposal for developing the Syrian stereographic projection. Survey Review, 40 (307), 92–101. doi:10.1179/003962608X253547
  • Habib, M., 2021. Evaluation of DEM interpolation techniques for characterizing terrain roughness. Catena, 198, 105072. doi:10.1016/j.catena.2020.105072
  • Habib, M., 2022. Fit-for-purpose conformal mapping for sustainable land administration in war-ravaged Syria. Heliyon, 8 (5), e09384. doi:10.1016/j.heliyon.2022.e09384
  • Habib, M. and A’kif, M.S., 2019. Evaluation of alternative conformal mapping for geospatial data in Jordan. Journal of Applied Geodesy, 13 (4), 335–344. doi:10.1515/jag-2019-0022
  • Habib, M., Farghal, A., and Taani, A., 2022. Developing low-cost automated tool for integrating maps with GNSS satellite positioning data. Journal of Geodetic Science, 12 (1), 141–153.
  • Habib, M. and Pradhan, B., 2019. A low-cost spatial tool for transforming feature positions of CAD-based topographic mapping. Geodesy and Cartography, 45 (4), 161–168. doi:10.3846/gac.2019.10322
  • Habib, A., Yildirim, U., and Habib, M., 2022. Applying kernel principal component analysis for enhanced multivariable regression modeling of rubberized concrete properties. Arabian Journal for Science and Engineering, 1–14. doi:10.1007/s13369-022-07435-8
  • Harwin, S. and Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4 (6), 1573–1599. doi:10.3390/rs4061573
  • Hill, A.C., et al., 2019. A new era in spatial data recording: low-cost GNSS. Advances in Archaeological Practice, 7 (2), 169–177. doi:10.1017/aap.2018.50
  • Hoerl, A.E. and Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12 (1), 55–67. doi:10.1080/00401706.1970.10488634
  • Janssen, V., 2009. Understanding coordinate reference systems, datums and transformations. International Journal of Geoinformatics, 5 (4), 41–53.
  • Kalu, I., et al., 2022. Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning. Applied Computing and Geosciences, 14, 100086. doi:10.1016/j.acags.2022.100086
  • Kohli, A. and Jenni, L., 2008. Transformation of cadastral data between geodetic reference frames using finite element method. In: Proceedings-integrating the generations, FIG working week. Stockholm, Sweden: International Federation of Surveyors (FIG).
  • Konakoglu, B.E.R.K.A.N.T., Cakır, L., and Gökalp, E., 2016. 2D coordinate transformation using artificial neural networks. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 183. doi:10.5194/isprs-archives-XLII-2-W1-183-2016
  • Kourouklis, S. and Paige, C.C., 1981. A constrained least squares approach to the general Gauss-Markov linear model. Journal of the American Statistical Association, 76 (375), 620–625. doi:10.1080/01621459.1981.10477694
  • Lapaine, M., Frančula, N., and Tutek, Ž., 2021. Local linear scale factors in map projections in the direction of coordinate axes. Geospatial Information Science, 24 (4), 630–637. doi:10.1080/10095020.2021.1968321
  • Li, B., Shen, Y., and Li, W., 2012. The seamless model for three-dimensional datum transformation. Science China Earth Sciences, 55 (12), 2099–2108. doi:10.1007/s11430-012-4418-z
  • Mahboub, V., 2012. On weighted total least-squares for geodetic transformations. Journal of Geodesy, 86 (5), 359–367. doi:10.1007/s00190-011-0524-5
  • Mahdipour, E. and Dadkhah, C., 2014. Automatic fire detection based on soft computing techniques: review from 2000 to 2010. Artificial Intelligence Review, 42 (4), 895–934. doi:10.1007/s10462-012-9345-z
  • Maling, D.H., 2013. Coordinate systems and map projections. Netherlands: Elsevier.
  • Mercan, H.Ü.S.E.Y.İ.N., Akyilmaz, O., and Aydin, C., 2018. Solution of the weighted symmetric similarity transformations based on quaternions. Journal of Geodesy, 92 (10), 1113–1130. doi:10.1007/s00190-017-1104-0
  • Ogi, S. and Murakami, M., 2000. Construction of the New Japan datum using space geodetic technologies. In R. Rummel, H. Drewes, W. Bosch, and H. Hornik (Eds.), Towards an integrated global geodetic observing system (IGGOS). Berlin, Heidelberg: Springer, 103–105. doi:10.1007/978-3-642-59745-9_16
  • Rasmussen, M.A. and Bro, R., 2012. A tutorial on the Lasso approach to sparse modeling. Chemometrics and Intelligent Laboratory Systems, 119, 21–31. doi:10.1016/j.chemolab.2012.10.003
  • Reit, B.G., 1997. A simple way of introducing a global reference frame in surveying and mapping. Survey Review, 34 (264), 87–90. doi:10.1179/sre.1997.34.264.87
  • Schaffrin, B. and Felus, Y.A., 2005. On total least-squares adjustment with constraints. In J. T. Freymueller (Ed.), A window on the future of geodesy. Berlin, Heidelberg: Springer, 417–421. doi:10.1007/3-540-27432-4_71
  • Schaffrin, B. and Felus, Y.A., 2008. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. Journal of Geodesy, 82 (6), 373–383. doi:10.1007/s00190-007-0186-5
  • Shahvandi, M.K. and Soja, B., 2022. Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of earth orientation parameters and GNSS station coordinate time series. Advances in Space Research, 70 (3), 563–575. doi:10.1016/j.asr.2022.05.042
  • Thomas, P.D., 1952. Conformal projections in geodesy and cartography. Vol. 4. Germany: US Government Printing Office.
  • Tong, X., Jin, Y., and Li, L., 2011. An improved weighted total least squares method with applications in linear fitting and coordinate transformation. Journal of Surveying Engineering, 137 (4), 120–128. doi:10.1061/(ASCE)SU.1943-5428.0000055
  • Torge, W. and Müller, J., 2012. Geodesy. Germany: de Gruyter. doi:10.1515/9783110250008
  • Varga, M., Grgić, M., and Bašić, T., 2017. Empirical comparison of the geodetic coordinate transformation models: a case study of Croatia. Survey Review, 49 (352), 15–27. doi:10.1080/00396265.2015.1104092
  • Velsink, H., 2018. Testing methods for adjustment models with constraints. Journal of Surveying Engineering, 144 (4), 04018009. doi:10.1061/(ASCE)SU.1943-5428.0000260
  • Villar-Cano, M., Marqués-Mateu, Á., and Jiménez-Martínez, M.J., 2019. Triangulation network of 1929–1944 of the first 1: 500 urban map of València. Survey Review. doi:10.1080/00396265.2018.1564599
  • Vincenty, T., 1987. Conformal transformations between dissimilar plane coordinate systems. Surveying and Mapping, 47 (4), 271–274.
  • Yanalak, M., et al., 2005. New local transformation method: non-sibsonian transformation. Journal of Surveying Engineering, 131 (1), 1–8. doi:10.1061/(ASCE)0733-9453(2005)131:1(1)
  • Yang, Y., 1999. Robust estimation of geodetic datum transformation. Journal of Geodesy, 73 (5), 268–274. doi:10.1007/s001900050243
  • Yang, J. and Zhuang, Y., 2010. An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Applied Soft Computing, 10 (2), 653–660. doi:10.1016/j.asoc.2009.08.040
  • You, R.J. and Hwang, H.W., 2006. Coordinate transformation between two geodetic datums of Taiwan by least-squares collocation. Journal of Surveying Engineering, 132 (2), 64–70. doi:10.1061/(ASCE)0733-9453(2006)132:2(64)
  • Zhang, S., Zhang, K., and Liu, P., 2016. Total least-squares estimation for 2D affine coordinate transformation with constraints on physical parameters. Journal of Surveying Engineering, 142 (3), 04016009. doi:10.1061/(ASCE)SU.1943-5428.0000180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.