181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Semi physical and machine learning approach for yield estimation of pearl millet crop using SAR and optical data products

, , &
Pages 573-592 | Received 29 Jan 2023, Accepted 13 Sep 2023, Published online: 22 Sep 2023

References

  • Asrar, G., et al., 1985. Estimation of total above-ground phytomass production using remotely sensed data. Remote Sensing of Environment, 17 (3), 211–220. doi:10.1016/0034-4257(85)90095-1
  • Ausiku, P.A., et al., 2022. Crop model parameterisation of three important pearl millet varieties for improved water use and yield estimation. Plants, 11 (6), 806. doi:10.3390/plants11060806.
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324.
  • Brisco, B., et al., 2013. Compact polarimetry assessment for rice and wetland mapping. International Journal of Remote Sensing, 34 (6), 1949–1964.
  • Chan, J. and Paelinckx, D., 2008. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112 (6), 2999–3011. doi:10.1016/j.rse.2008.02.011.
  • Chaurasiya, G., et al., 2017. Semi-physical approach for sugarcane yield modelling with remotely sensed inputs. Vayumandal, 43 (1), 11–22.
  • Congalton, R.G., 2009. Accuracy and error analysis of global and local maps: lessons learned and future considerations. Remote Sensing of Global Croplands for Food Security, 441, 47–55.
  • DMD, 2020. Directorate of millets development. Available online at: http://millets.dacfw.nic.in
  • Filipponi, F., 2019. Sentinel-1 GRD preprocessing workflow. Multidisciplinary Digital Publishing Institute Proceedings, 18 (1), 11.
  • Grizonnet, M., et al., 2017. Orfeo ToolBox: open-source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2 (1), 1–8. doi:10.1186/s40965-017-0031-6.
  • Huang, C., Davis, L., and Townshend, J., 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23 (4), 725–749. doi:10.1080/01431160110040323.
  • Khairwal, I.S., et al., 2007. Pearl millet crop management and seed production manual.
  • Kranjčić, N., et al., 2019. Machine learning methods for classification of the green infrastructure in city areas. ISPRS International Journal of Geo-Information, 8 (10), 463. doi:10.3390/ijgi8100463.
  • Lee, J.S., 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2 (2), 165–168. doi:10.1109/TPAMI.1980.4766994.
  • McNairn, H., et al., 2009. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Transactions on Geoscience and Remote Sensing, 47 (12), 3981–3992. doi:10.1109/TGRS.2009.2026052
  • Mohit, K., et al., 2022. Machine learning-based meta-classifier for Kharif Bajra (pearl millet) discrimination in the mixed cropping environment using multi-temporal SAR data. Geocarto International, 37 (27), 1–15. doi:10.1080/10106049.2022.2113452.
  • Monteith, J.L., 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 281 (980), 277–294.
  • Moulin, S., Bondeau, A., and Delecolle, R., 1998. Combining agricultural crop models and satellite observations: from field to regional scales. International Journal of Remote Sensing, 19 (6), 1021–1036. doi:10.1080/014311698215586.
  • Raich, J.W., et al., 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications, 1 (4), 399–429. doi:10.2307/1941899.
  • Rodriguez-Galiano, V.F., et al., 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. doi:10.1016/j.isprsjprs.2011.11.002
  • Shanmugapriya, S., Haldar, D., and Danodia, A., 2020. Optimal datasets suitability for pearl millet (Bajra) discrimination using multiparametric SAR data. Geocarto International, 35 (16), 1814–1831. doi:10.1080/10106049.2019.1585485.
  • Soudani, K., et al., 2021. Potential of C-band synthetic aperture radar sentinel-1 time-series for the monitoring of phenological cycles in a deciduous forest. International Journal of Applied Earth Observation and Geoinformation, 104, 102505. doi:10.1016/j.jag.2021.102505
  • Tripathy, R., et al., 2014. Operational semi-physical spectral-spatial wheat yield model development. The International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, 40 (8), 977. doi:10.5194/isprsarchives-XL-8-977-2014.
  • Wiegand, C.L., et al., 1990. Multisite analyses of spectral-biophysical data for corn. Remote Sensing of Environment, 33 (1), 1–16. doi:10.1016/0034-4257(90)90051-M
  • Xiao, X., et al., 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94 (1), 105–122. doi:10.1016/j.rse.2004.08.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.