4,937
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Associations of peripheral blood DNA methylation and estimated monocyte proportion differences during infancy with toddler attachment style

, , , , , , , & show all
Pages 132-161 | Received 26 Sep 2020, Accepted 10 May 2021, Published online: 01 Jul 2021

References

  • Affonso, D. D., De, A. K., Horowitz, J. A., & Mayberry, L. J. (2000). An international study exploring levels of postpartum depressive symptomatology. Journal of Psychosomatic Research, 49(3), 207–216. https://doi.org/10.1016/S0022-3999(00)00176-8
  • Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., Bolton, E., … Zbicz, K. (2018). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46(D1), D8–D13. https://doi.org/10.1093/nar/gkx1095
  • Aichurok Kamalova, B., Nakagawa, T., Roger Colbran, A., Kavalali, C. E., Delpire, E., C., & Sachin Patel, P. D. (2020). Functional characterization of an AMPA receptor auxiliary subunit GSG1L in vivo. Vanderbilt University Institutional Repository. Retrieved February 15, 2021, from https://ir.vanderbilt.edu/handle/1803/16364
  • Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation. Psychology Press. Retrieved November 25, 2020, from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.690.8245&rep=rep1&type=pdf
  • Aristizabal, M. J., Anreiter, I., Halldorsdottir, T., Odgers, C. L., McDade, T. W., Goldenberg, A., … O’Donnell, K. J. (2019). Biological embedding of experience: A primer on epigenetics. Proceedings of the National Academy of Sciences, 117(38), 201820838. https://doi.org/10.1073/pnas.1820838116
  • Artigas, R., Vega-Tapia, F., Hamilton, J., & Krause, B. J. (2020). Dynamic DNA methylation changes in early versus late adulthood suggest nondeterministic effects of childhood adversity: A meta-analysis. Journal of Developmental Origins of Health and Disease. Advance online publication. https://doi.org/10.1017/S2040174420001075
  • Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays | Bioinformatics | Oxford Academic. Bioinformatics, 30 (10), 1363–1369. https://academic.oup.com/bioinformatics/article/30/10/1363/267584. .
  • Austin, M. K., Chen, E., Ross, K. M., Mcewen, L. M., Maclsaac, J. L., Kobor, M. S., & Miller, G. E. (2018, November). Early-life socioeconomic disadvantage, not current, predicts accelerated epigenetic aging of monocytes. Psychoneuroendocrinology, 97, 131–134. https://doi.org/10.1016/j.psyneuen.2018.07.007
  • Bell, J. T., Pai, A. A., Pickrell, J. K., Gaffney, D. J., Pique-Regi, R., Degner, J. F., … Pritchard, J. K. (2011). DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biology, 12(1), 1–13. https://doi.org/10.1186/gb-2011-12-1-r10
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bergman, K., Sarkar, P., Glover, V., & O’Connor, T. G. (2010). Maternal Prenatal Cortisol and Infant Cognitive Development: Moderation by Infant–Mother Attachment. Biological Psychiatry, 67(11), 1026–1032. https://doi.org/10.1016/j.biopsych.2010.01.002
  • Bernard, K., Hostinar, C. E., & Dozier, M. (2019). Longitudinal associations between attachment quality in infancy, C-reactive protein in early childhood, and BMI in middle childhood: Preliminary evidence from a CPS-referred sample. Attachment & Human Development, 21(1), 5–22. https://doi.org/10.1080/14616734.2018.1541513
  • Bernier, A., Beauchamp, M. H., Carlson, S. M., & Lalonde, G. (2015). A secure base from which to regulate: Attachment security in toddlerhood as a predictor of executive functioning at school entry. Developmental Psychology, 51 (9), 1177–1189. https://psycnet.apa.org/buy/2015-32546-001
  • Bosmans, G., Bakermans-Kranenburg, M. J., Vervliet, B., Verhees, M. W. F. T., & van IJzendoorn, M. H. (2020, June). A learning theory of attachment: Unraveling the black box of attachment development. Neuroscience and Biobehavioral Reviews, 113, 287–298. https://doi.org/10.1016/j.neubiorev.2020.03.014
  • Bowlby, J. (1969). Attachment and Loss (1st ed.). Basic Books.
  • Bowlby, J. (1979). The making and breaking of affectional bonds. Tavistock.
  • Bowlby, J. (1982). Attachment and loss: Retrospect and prospect. American Journal of Orthopsychiatry, 52(4), 664. https://doi.org/10.1111/j.1939-0025.1982.tb01456.x
  • Boyce, W. T., & Kobor, M. S. (2015). Development and the epigenome: the ‘synapse’ of gene–environment interplay. Developmental Science, 18(1), 1–23.
  • Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., & Gilliam, T. C. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58(11), 901–907. https://doi.org/10.1016/j.biopsych.2005.05.010
  • Brummelte, S. (2016, September). Introduction: Early adversity and brain development. Neuroscience, 342, 1–3. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0306452216304882?returnurl=null&referrer=null
  • Bush, N. R., Edgar, R. D., Park, M., Macisaac, J. L., Mcewen, L. M., Adler, N. E., Essex, M. J., Kobor, M. S., & Boyce, T. (2018). The biological embedding of early-life socioeconomic status and family adversity in children’s genome-wide DNA methylation. Epigenomics, 10(11), 1445–1461. https://doi.org/10.2217/epi-2018-0042
  • Carlson, E. A., Alan sroufe, L., & Egeland, B. (2004). The Construction of Experience: A Longitudinal Study of Representation and Behavior. Child Development, 75(1), 66–83. https://doi.org/10.1111/j.1467-8624.2004.00654.x
  • Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s13742-015-0047-8
  • Chen, E., Miller, G. E., Kobor, M. S., & Cole, S. W. (2011). Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Molecular Psychiatry, 16(7), 729–737. https://doi.org/10.1038/mp.2010.53
  • Cheung, W. A., Shao, X., Morin, A., Siroux, V., Kwan, T., Ge, B., Aïssi, D., Chen, L., Vasquez, L., Allum, F., Guénard, F., Bouzigon, E., Simon, -M.-M., Boulier, E., Redensek, A., Watt, S., Datta, A., Clarke, L., Flicek, P., Paul, D. S., … Grundberg, E. (2017). Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome. Genome Biology, 18(1), 50. https://doi.org/10.1186/s13059-017-1173-7
  • Chisholm, J. S. (1996). The evolutionary ecology of attachment organization. Human Nature (Hawthorne, N.Y.), 7(1), 1–37. https://doi.org/10.1007/BF02733488
  • Chopik, W. J., Edelstein, R. S., & Grimm, K. J. (2019). Longitudinal changes in attachment orientation over a 59-year period. Journal of Personality and Social Psychology, 116(4), 598–611. https://doi.org/10.1037/pspp0000167
  • Conradt, E., & Ablow, J. (2010). Infant physiological response to the still-face paradigm: Contributions of maternal sensitivity and infants’ early regulatory behavior. Infant Behavior and Development, 33(3), 251–265. https://doi.org/10.1016/j.infbeh.2010.01.001
  • Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., D’Eustachio, P., & Stein, L. (2011). Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Research, 39(SUPPL. Database), D691–D697. https://doi.org/10.1093/nar/gkq1018
  • Cyr, C., Euser, E. M., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2010). Attachment security and disorganization in maltreating and high-risk families: A series of meta-analyses. Development and Psychopathology, 22(1), 87–108. https://doi.org/10.1017/S0954579409990289
  • Dall’ Aglio, L., Rijlaarsdam, J., Mulder, R. H., Neumann, A., Felix, J. F., Kok, R., Bakermans-Kranenburg, M. J., van Ijzendoorn, M. H., Tiemeier, H., & Cecil, C. A. M. (2020). Epigenome-wide associations between observed maternal sensitivity and offspring DNA methylation: A population-based prospective study in children. Psychological Medicine, 1–11. https://doi.org/10.1017/S0033291720004353
  • Darling Rasmussen, P., & Storebø, O. J. (2021). Attachment and Epigenetics: A Scoping Review of Recent Research and Current Knowledge. Psychological Reports, 124(2), 479–501. https://doi.org/10.1177/0033294120901846
  • Darling Rasmussen, P., Storebø, O. J., Løkkeholt, T., Voss, L. G., Shmueli-Goetz, Y., Bojesen, A. B., Simonsen, E., & Bilenberg, N. (2019). Attachment as a Core Feature of Resilience: A Systematic Review and Meta-Analysis. Psychological Reports, 122(4), 1259–1296. https://doi.org/10.1177/0033294118785577
  • de Ruiter, C., & van Ijzendoorn, M. H. (1993). Attachment and cognition: A review of the literature. International Journal of Educational Research, 19 (6), 525–540. https://dare.uva.nl/search?identifier=a5e9be2c-e78a-42f5-a699-f44052364b0b. .
  • Du, P., Kibbe, W. A., & Lin, S. M. (2018). Lumi : A Pipeline for Processing Illumina Microarray. 24(13), 1547–1548. https://doi.org/10.1093/bioinformatics/btn224
  • Edelstein, R. S. (2006). Attachment and emotional memory: Investigating the source and extent of avoidant memory impairments. Emotion, 6(2), 340–345. https://doi.org/10.1037/1528-3542.6.2.340
  • Edgar, R. D., Jones, M. J., Meaney, M. J., Turecki, G., & Kobor, M. S. (2017). BECon: A tool for interpreting DNA methylation findings from blood in the context of brain. Translational Psychiatry, 7(8), e1187–e1187. https://doi.org/10.1038/tp.2017.171
  • Edgar, R. D., Jones, M. J., Robinson, W. P., & Kobor, M. S. (2017). An empirically driven data reduction method on the human 450K methylation array to remove tissue specific non-variable CpGs. Clinical Epigenetics, 9(1), 1–8. https://doi.org/10.1186/s13148-017-0320-z
  • Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the American Statistical Association, 102(477), 93–103. https://doi.org/10.1198/016214506000001211
  • Efron, B., Tibshirani, R., Storey, J. D., & Tusher, V. (2001). Empirical bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96(456), 1151–1160. https://doi.org/10.1198/016214501753382129
  • Ehrlich, K. B., Ross, K. M., Chen, E., & Miller, G. E. (2016). Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype? Development and Psychopathology, 28(4pt2), 1273–1283. https://doi.org/10.1017/S0954579416000845
  • Ernst, J., & Kellis, M. (2017). Chromatin-state discovery and genome annotation with ChromHMM. Nature Publishing Group, 12(12), 2478. https://doi.org/10.1038/nprot.2017.124
  • Esposito, E. A., Jones, M. J., Doom, J. R., Macisaac, J. L., Gunnar, M. R., & Kobor, M. S. (2016). Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Development and Psychopathology, 28(4pt2), 1385–1399. https://doi.org/10.1017/S0954579416000055
  • Essex, M. J., Thomas Boyce, W., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M. A., & Kobor, M. S. (2013). Epigenetic Vestiges of Early Developmental Adversity: Childhood Stress Exposure and DNA Methylation in Adolescence. Child Development, 84(1), 58–75. https://doi.org/10.1111/j.1467-8624.2011.01641.x
  • Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics: The Official Journal of the International Environmetrics Society, 20(6), 621–632.
  • Fortin, J., Triche, T. J., & Hansen, K. D. (2017). Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics, 33(4), 558–560.
  • Fraley, R. C. (2019). Attachment in Adulthood: Recent Developments, Emerging Debates, and Future Directions. Annual Review of Psychology, 70(1), 401–422. https://doi.org/10.1146/annurev-psych-010418-102813
  • Fuller, B., Bein, E., Bridges, M., Halfon, N., Jung, S., Rabe-Hesketh, S., & Kuo, A. (2010). Maternal Practices That Influence Hispanic Infants‘ Health and Cognitive Growth. Pediatrics, 125(2), 324. https://doi.org/10.1542/peds.2009-0496
  • Ganter, B., Tugendreich, S., Pearson, C. I., Ayanoglu, E., Baumhueter, S., Bostian, K. A., Brady, L., Browne, L. J., Calvin, J. T., Day, G.-J., Breckenridge, N., Dunlea, S., Eynon, B. P., Furness, L. M., Ferng, J., Fielden, M. R., Fujimoto, S. Y., Gong, L., Hu, C., Judo, M. S. B., … Jarnagin, K. (2005). Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. Journal of Biotechnology, 119(3), 219–244. https://doi.org/10.1016/j.jbiotec.2005.03.022
  • Garg, E., Chen, L. I., Nguyen, T. T. T., Pokhvisneva, I., Chen, L. M., Unternaehrer, E., … O’donnell, K. J. (2018). The early care environment and DNA methylome variation in childhood. Development and Psychopathology, 30(3), 891–903. https://doi.org/10.1017/S0954579418000627
  • Gatev, E., Gladish, N., Mostafavi, S., & Kobor, M. S. (2020). CoMeBack: DNA methylation array data analysis for co-methylated regions. Bioinformatics, 36(9), 2675–2683. Retrieved July 17, 2020, from Bioinformatics website: https://academic.oup.com/bioinformatics/article/36/9/2675/5716323
  • Gershoni-Emek, N., Mazza, A., Chein, M., Gradus-Pery, T., Xiang, X., Li, K. W., Sharan, R., & Perlson, E. (2016). Proteomic analysis of dynein-interacting proteins in amyotrophic lateral sclerosis synaptosomes reveals alterations in the RNA-binding protein staufen. Molecular and Cellular Proteomics, 15(2), 506–522. https://doi.org/10.1074/mcp.M115.049965
  • Gertz, J., Varley, K. E., Reddy, T. E., Bowling, K. M., Pauli, F., Parker, S. L., Willard, H. F., Myers, R. M., & Kucera, K. S. (2011). Analysis of DNA Methylation in a Three-Generation Family Reveals Widespread Genetic Influence on Epigenetic Regulation. PLoS Genetics, 7(8), e1002228. https://doi.org/10.1371/journal.pgen.1002228
  • Gervin, K., Salas, L. A., Bakulski, K. M., Van Zelm, M. C., Koestler, D. C., Wiencke, J. K., Duijts, L., Moll, H. A., Kelsey, K. T., Kobor, M. S., Lyle, R., Christensen, B. C., Felix, J. F., & Jones, M. J. (2019). Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clinical Epigenetics, 11(1), 1–15. https://doi.org/10.1186/s13148-019-0717-y
  • Gómez-Olarte, S., Bolaños, N. I., Echeverry, M., Rodríguez, A. N., Cuéllar, A., Puerta, C. J., Mariño, A., & González, J. M. (2019). Intermediate Monocytes and Cytokine Production Associated With Severe Forms of Chagas Disease. Frontiers in Immunology, 10, 1671. https://doi.org/10.3389/fimmu.2019.01671
  • Gong, L.-B., Wen, T., Li, Z., Xin, X., Che, X.-F., Wang, J., Liu, Y.-P., & Qu, X.-J. (2019). DYNC1I1 Promotes the Proliferation and Migration of Gastric Cancer by Up-Regulating IL-6 Expression. Frontiers in Oncology, 9(JUN), 491. https://doi.org/10.3389/fonc.2019.00491
  • Graw, S., Henn, R., Thompson, J. A., & Koestler, D. C. (2019). PwrEWAS: A user-friendly tool for comprehensive power estimation for epigenome wide association studies (EWAS). BMC Bioinformatics, 20(1), 1–11. https://doi.org/10.1186/s12859-019-2804-7
  • Groh, A. M., Roisman, G. I., Booth-Laforce, C., Fraley, R. C., Owen, M. T., Cox, M. J., & Burchinal, M. R. (2014). IV. Stability of attachment security from infancy to late adolescence. Monographs of the Society for Research in Child Development, 79(3), 51–66. https://doi.org/10.1111/mono.12113
  • Gu, X., Mao, X., Lussier, M. P., Hutchison, M. A., Zhou, L., Hamra, F. K., Roche, K. W., & Lu, W. (2016). GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons. Nature Communications, 7(1), 1–18. https://doi.org/10.1038/ncomms10873
  • Haertle, L., Müller, T., Lardenoije, R., Maierhofer, A., Dittrich, M., Riemens, R. J. M., Stora, S., Roche, M., Leber, M., Riedel-Heller, S., Wagner, M., Scherer, M., Ravel, A., Mircher, C., Cieuta-Walti, C., Durand, S., van de Hove, D. L. A., Hoffmann, P., Ramirez, A., El Hajj, N., & Mégarbané, A. (2019). Methylomic profiling in trisomy 21 identifies cognition- and Alzheimer’s disease-related dysregulation. Clinical Epigenetics, 11(1), 1. https://doi.org/10.1186/s13148-019-0787-x
  • Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S. V., Zhang, L., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016
  • Hazan, C., & Shaver, P. R. (1994). Deeper Into Attachment Theory. Psychological Inquiry, 5(1), 68–79. https://doi.org/10.1207/s15327965pli0501_15
  • Henneman, P., Bouman, A., Mul, A., Knegt, L., Van Der Kevie-Kersemaekers, A.-M., Zwaveling-Soonawala, N., van Trotsenburg, A. S. P., Mannens, M. M., & Meijers-Heijboer, H. E. J. (2018). Widespread domain-like perturbations of DNA methylation in whole blood of Down syndrome neonates. PLoS ONE, 13(3), 3. https://doi.org/10.1371/journal.pone.0194938
  • Hermansen, M. C. (2001). Nucleated red blood cells in the fetus and newborn. Archives of Disease in Childhood - Fetal and Neonatal Edition, 84(3), F211–F215. https://doi.org/10.1136/fn.84.3.F211
  • Hertzman, C. (1999). The Biological Embedding of Early Experience and Its Effects on Health in Adulthood. Annals of the New York Academy of Sciences, 896(1), 85–95. https://doi.org/10.1111/j.1749-6632.1999.tb08107.x
  • Hertzman, C. (2012). Putting the concept of biological embedding in historical perspective. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl._2), 17160–17167. https://doi.org/10.1073/pnas.1202203109
  • Holland, S. M. (2019). Principal Components Analysis (PCA). Athens.
  • Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13(1), 86. https://doi.org/10.1186/1471-2105-13-86
  • Hoye, J. R., Cheishvili, D., Yarger, H. A., Roth, T. L., Szyf, M., & Dozier, M. (2020). Preliminary indications that the Attachment and Biobehavioral Catch-up Intervention alters DNA methylation in maltreated children. Development and Psychopathology, 32(4), 1486–1494. https://doi.org/10.1017/S0954579419001421
  • Islam, S. A., Goodman, S. J., Macisaac, J. L., Obradović, J., Barr, R. G., Boyce, W. T., & Kobor, M. S. (2019). Integration of DNA methylation patterns and genetic variation in human pediatric tissues help inform EWAS design and interpretation. Epigenetics & Chromatin, 12(1), 1. https://doi.org/10.1186/s13072-018-0245-6
  • Jacobi, E., & Engelhardt, J. (2021). Modulation of information processing by AMPA receptor auxiliary subunits. The Journal of Physiology, 599(2), 471–483. https://doi.org/10.1113/JP276698
  • Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127. https://doi.org/10.1093/biostatistics/kxj037
  • Jones, M. J., Moore, S. R., & Kobor, M. S. (2018). Annual Review of Psychology Principles and Challenges of Applying Epigenetic Epidemiology to Psychology. Annual Review of Psychology, 69(1), 459–485. https://doi.org/10.1146/annurev-psych-122414-033653
  • Jong, E., Strunk, T., Burgner, D., Lavoie, P. M., & Currie, A. (2017). The phenotype and function of preterm infant monocytes: Implications for susceptibility to infection. Journal of Leukocyte Biology, 102(3), 645–656. https://doi.org/10.1189/jlb.4RU0317-111R
  • Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, A. D. (2002). The Human Genome Browser at UCSC. Genome Research, 12(6), 996–1006. https://doi.org/10.1101/gr.229102
  • Khan, F., Chong, J. Y., Theisen, J. C., Fraley, R. C., Young, J. F., & Hankin, B. L. (2020). Development and change in attachment: A multiwave assessment of attachment and its correlates across childhood and adolescence. Journal of Personality and Social Psychology, 118(6), 1188–1206. https://doi.org/10.1037/pspi0000211
  • Koestler, D. C., Jones, M. J., Usset, J., Christensen, B. C., Butler, R. A., Kobor, M. S., Wiencke, J. K., & Kelsey, K. T. (2016). Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC Bioinformatics, 17(1), 1–21. https://doi.org/10.1186/s12859-016-0943-7
  • Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109(SUPPL.2), 17186–17196. https://doi.org/10.1073/pnas.1121251109
  • Korthauer, K., Kimes, P. K., Duvallet, C., Reyes, A., Subramanian, A., Teng, M., … Hicks, S. C. (2019). A practical guide to methods controlling false discoveries in computational biology. Genome Biology, 20(1), 118. https://doi.org/10.1186/s13059-019-1716-1
  • Lam, L. L., Emberly, E., Fraser, H. B., Neumann, S. M., Chen, E., Miller, G. E., & Kobor, M. S. (2012). Factors underlying variable DNA methylation in a human community cohort. PNAS, 109(Suppl. 2), 17253–17260. https://doi.org/10.1073/pnas.1121249109
  • Letourneau, N. L., Tryphonopoulos, P. D., Novick, J., Hart, J. M., Giesbrecht, G., & Oxford, M. L. (2018). Nursing Child Assessment Satellite Training Parent-Child Interaction Scales: Comparing American and Canadian Normative and High-Risk Samples. Journal of Pediatric Nursing, 40, 47–57. https://doi.org/10.1016/j.pedn.2018.02.016
  • Louis, F., Piron, G., Schaaf-Lafontaine, R., & Belaiche. (1998). Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clinical & Experimental Immunology, 113(3), 401–406. https://doi.org/10.1046/j.1365-2249.1998.00662.x
  • Luecken, L. J., & Lemery, K. S. (2004). Early caregiving and physiological stress responses. Clinical Psychology Review, 24(2), 171–191. https://doi.org/10.1016/j.cpr.2004.01.003
  • Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J. D. R., … Nedergaard, M. (2015). Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nature Communications, 6(1), 1–12. https://doi.org/10.1038/ncomms7807
  • Madigan, S., Moran, G., Schuengel, C., Pederson, D. R., & Otten, R. (2007). Unresolved maternal attachment representations, disrupted maternal behavior and disorganized attachment in infancy: Links to toddler behavior problems. Journal of Child Psychology and Psychiatry, 48(10), 1042–1050. https://doi.org/10.1111/j.1469-7610.2007.01805.x
  • Main, M., & Solomon, J. (1986). Discovery of an insecure-disorganized/disoriented attachment pattern. In T. B. Brazelton & M. W. Yogman (Eds.), Affective development in infancy (pp. 95–124). Ablex Publishing. https://psycnet.apa.org/record/1986-97821–005
  • Main, M., & Hesse, E. (1990). Parents’ unresolved traumatic experiences are related to infant disorganized attachment status: Is frightened and/or frightening parental behavior the linking mechanism? In M. T. Greenberg, D. Cicchetti, & E. M. Cummings (Eds.), The John D. and Catherine T. MacArthur Foundation series on mental health and development. Attachment in the preschool years: Theory, research, and intervention (pp. 161–182). University of Chicago Press. https://psycnet.apa.org/record/1990-98514-005
  • Main, M., & Solomon, J. (1990). Procedures for identifying infants as disorganized/disoriented during the Ainsworth strange situation. In M. T. Greenberg, D. Cicchetti, & E. M. Cummings (Eds.), Attachment in the Preschool Years: Theory, Research, and Intervention (pp. 121–160). The University of Chicago Press. https://books.google.ca/books?hl=en&lr=&id=WzHIfiCXE8EC&oi=fnd&pg=PA121&dq=Main,+M.,+%26+Solomon,+J.+(1990).+Procedures+for+identifying+infants+as+disorganized/disoriented+during+the+Ainsworth+strange+situation.+In+M.+Greenberg,+D.+Cicchetti,+%26+E.+M.+Cummings+(Eds.),+Attachment+in+the+preschool+years+(pp.+121-160).+University+of+Ch&ots=WVogvEysUs&sig=HxkmRQsNsHN_crrHDytIL471krg&redir_esc=y#v=onepage&q&f=false
  • Main, M., & Stadtman, J. (1981). Infant Response to Rejection of Physical Contact by the Mother. Journal of the American Academy of Child Psychiatry, 20(2), 292–307. https://doi.org/10.1016/S0002-7138(09)60990-0
  • Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159(4), 652–654. https://doi.org/10.1176/appi.ajp.159.4.652
  • Maltby, V. E., Lea, R. A., Graves, M. C., Sanders, K. A., Benton, M. C., Tajouri, L., … Lechner-Scott, J. (2018). Genome-wide DNA methylation changes in CD19+ B cells from relapsing-remitting multiple sclerosis patients. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-35603-0
  • Mao, X., Gu, X., & Lu, W. (2017). GSG1L regulates the strength of AMPA receptor-mediated synaptic transmission but not AMPA receptor kinetics in hippocampal dentate granule neurons. Journal of Neurophysiology, 117(1), 28–35. https://doi.org/10.1152/jn.00307.2016
  • Marioni, R. E., Mcrae, A. F., Bressler, J., Colicino, E., Hannon, E., Li, S., … Deary, I. J. (2018). Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry, 23(11), 2133–2144. https://doi.org/10.1038/s41380-017-0008-y
  • Mayne, J. (2012). Contribution analysis: Coming of age? Evaluation, 18(3), 270–280. https://doi.org/10.1177/1356389012451663
  • Mcgowan, P. O., Suderman, M., Sasaki, A., Huang, T. C. T., Hallett, M., Meaney, M. J., & Szyf, M. (2011). Broad Epigenetic Signature of Maternal Care in the Brain of Adult Rats. PLoS One, 6(2), e14739. https://doi.org/10.1371/journal.pone.0014739
  • Measelle, J. R., & Ablow, J. C. (2018). Contributions of early adversity to pro-inflammatory phenotype in infancy: The buffer provided by attachment security. Attachment and Human Development, 20(1), 1–23. https://doi.org/10.1080/14616734.2017.1362657
  • Measelle, J. R., David, J., & Ablow, J. C. (2017). Increased levels of inflammation among infants with disorganized histories of attachment. Behavioural Brain Research, 325(Part B), 260–267. https://doi.org/10.1016/j.bbr.2016.12.001
  • Meins, E. (1997). Security of attachment and the social development of cognition. In Essays in developmental psychology. Psychology Press. Retrieved October 15, 2020, from https://psycnet.apa.org/record/1997-36371–000
  • Mendenhall, E. M., & Bernstein, B. E. (2008). Chromatin state maps: New technologies, new insights. Current Opinion in Genetics and Development, 18(2), 109–115. https://doi.org/10.1016/j.gde.2008.01.010
  • Merrill, S. M., Gladish, N., & Kobor, M. S. (2019). Social environment and epigenetics. In Current topics in behavioral neurosciences (vol. 42, pp. 83–126). Springer. https://doi.org/10.1007/7854_2019_114
  • Mesman, J., van Ijzendoorn, M. H., & Sagi-Schwartz, A. (2016). Cross-cultural patterns of attachment: Universal and contextual dimensions. In J. Cassidy & P. R. Shaver (Eds.), Handbook of attachment: Theory, research, and clinical applications (3rded., pp. 852–877). The Guilford Press. https://d1wqtxts1xzle7.cloudfront.net/49637071/chapter_handbook_2016.pdf?1476616663=&response-content-disposition=inline%3B+filename%3DCross_cultural_patterns_of_attachment_Un.pdf&Expires=1614329839&Signature=dJ0goq4KDS5lrZw2oQ1xxPTWW2VYpUZT-d9EiMUR9QR-NJSuU0-BE13DXEpB1v-PS1JoFPFfd85xQL4pt~yejXURYQCZqVAk2Bu1Umv5tntDiAyKF38CdmecBbPpqIs9waxapZ7S4IRRmGLXN1o1~YfvFpiCcsdyCGJRVbxqid8c0vCSf3cCc3eIpH4d5cWuSeiMIPbONMm2pvJ73Tt5-fQJYtc3K-PrrJlNDCnwyktiH34pTXm2oXTu55frL6RyjKCUQ73l23hkLss-NTspN6n59WUi7b-1-~b1lBZdkRDN3eDNf~RGuWxWJuaDaEaaPjWRxRRXpe6heXe7VQJ0hA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
  • Mi, G., Di, Y., Emerson, S., Cumbie, J. S., & Chang, J. H. (2012). Length Bias Correction in Gene Ontology Enrichment Analysis Using Logistic Regression. PLoS ONE, 7(10), 46128. https://doi.org/10.1371/journal.pone.0046128
  • Miller, G. E., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science : A Journal of the American Psychological Society/APS, 21(6), 848–856. https://doi.org/10.1177/0956797610370161
  • Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological Stress in Childhood and Susceptibility to the Chronic Diseases of Aging: Moving Toward a Model of Behavioral and Biological Mechanisms. Psychological Bulletin, 137(6), 959–997. https://doi.org/10.1037/a0024768
  • Mooney, M. A., Ryabinin, P., Wilmot, B., Bhatt, P., Mill, J., & Nigg, J. T. (2020). Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Translational Psychiatry, 10(1), 1–12. https://doi.org/10.1038/s41398-020-0710-4
  • Moore, S. R., Mcewen, L. M., Mah, S. M., & Kobor, M. S. (2017). Epigenetic correlates of neonatal contact in humans. Development and Psychopathology, 29(5), 1517–1538. https://doi.org/10.1017/S0954579417001213
  • Moss, E., & St-Laurent, D. (2001). Attachment at school age and academic performance. Developmental Psychology, 37(6), 863–874. https://doi.org/10.1037/0012-1649.37.6.863
  • Nagy, C., & Turecki, G. (2012). Sensitive periods in epigenetics: Bringing us closer to complex behavioral phenotypes. Epigenomics, 4(4), 445–457. https://doi.org/10.2217/epi.12.37
  • Oxford, M. & Finlay, D. (2013). Parent-Child Interaction Teaching Scale manual(2nd ed.). NCAST Programs.
  • Pérez, R. F., Santamarina, P., Tejedor, J. R., Urdinguio, R. G., Álvarez-Pitti, J., Redon, P., … Lurbe, E. (2019). Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. Journal of Translational Medicine, 17(1), 1–16. https://doi.org/10.1186/s12967-018-1751-9
  • Pidsley, R., Wong, Y., Volta, C. C., Lunnon, M., Mill, J., K., & Schalkwyk, L. C. (2013). A data-driven approach to preprocessing Illumina 450K methylation array data. In BMC Genomics, 14(1), 1–10. http://www.biomedcentral.com/1471-2164/14/293.
  • Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C. & Clark, S. J. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 17(1), 1–17.
  • Pietromonaco, P. R., & Powers, S. I. (2015, February). Attachment and health-related physiological stress processes. Current Opinion in Psychology, 1, 34–39. https://doi.org/10.1016/j.copsyc.2014.12.001
  • Prame Kumar, K., Nicholls, A. J., & Wong, C. H. Y. (2018). Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell and Tissue Research, 371(3), 551–565. https://doi.org/10.1007/s00441-017-2753-2
  • Price, E. M., Cotton, A. M., Lam, L. L., Farré, P., Emberly, E., Brown, C. J., … Kobor, M. S. (2013). Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics & Chromatin, 6(1), 1–15. https://doi.org/10.1186/1756-8935-6-4
  • Provenzi, L., Brambilla, M., Scotto di Minico, G., Montirosso, R., & Borgatti, R. (2020). Maternal caregiving and DNA methylation in human infants and children: Systematic review. Genes, Brain and Behavior, 19(3), e12616. https://doi.org/10.1111/gbb.12616
  • Puig, J., Englund, M. M., Simpson, J. A., & Collins, W. A. (2013). Predicting adult physical illness from infant attachment: A prospective longitudinal study. Health Psychology, 32(4), 409–417. https://doi.org/10.1037/a0028889
  • Ren, X., & Kuan, P. F. (2019). methylGSA: A Bioconductor package and Shiny app for DNA methylation data length bias adjustment in gene set testing | Bioinformatics | Oxford Academic. Bioinformatics, 35 (11), 1958–1959. https://academic.oup.com/bioinformatics/article/35/11/1958/5140219
  • Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128(2), 330–366. https://doi.org/10.1037/0033-2909.128.2.330
  • Robakis, T. K., Zhang, S., Rasgon, N. L., Li, T., Wang, T., Roth, M. C., … Urban, A. E. (2020). Epigenetic signatures of attachment insecurity and childhood adversity provide evidence for role transition in the pathogenesis of perinatal depression. Translational Psychiatry, 10(1), 1–14. https://doi.org/10.1038/s41398-020-0703-3
  • Roberts, A. L., Gladish, N., Gatev, E., Jones, M. J., Chen, Y., MacIsaac, J. L., Tworoger, S. S., Austin, S.B., Tanrikut, C., Chavarro, J. E. Baccarelli, A. A., & Kobor, M. S. (2018). Exposure to childhood abuse is associated with human sperm DNA methylation. Translational Psychiatry, 8(1), 1–11.
  • Samson, L. D., Boots, A. M. H., Verschuren, W. M. M., Picavet, H. S. J., Engelfriet, P., & Buisman, A. M. (2019, October). Frailty is associated with elevated CRP trajectories and higher numbers of neutrophils and monocytes. Experimental Gerontology, 125, 110674. https://doi.org/10.1016/j.exger.2019.110674
  • Shah, P. E., Fonagy, P., & Strathearn, L. (2010). Is attachment transmitted across generations? the plot thickens. Clinical Child Psychology and Psychiatry, 15(3), 329–345. https://doi.org/10.1177/1359104510365449
  • Sherman, L. J., Rice, K., & Cassidy, J. (2015, September). Infant capacities related to building internal working models of attachment figures: A theoretical and empirical review. Developmental Review, 37, 109–141. https://doi.org/10.1016/j.dr.2015.06.001
  • Slopen, N., Kubzansky, L. D., McLaughlin, K. A., & Koenen, K. C. (2013). Childhood adversity and inflammatory processes in youth: A prospective study. Psychoneuroendocrinology, 38(2), 188–200. https://doi.org/10.1016/j.psyneuen.2012.05.013
  • Smith, A. K., Kilaru, V., Kocak, M., Almli, L. M., Mercer, K. B., Ressler, K. J., … Conneely, K. N. (2014). Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics, 15(1), 1–11. https://doi.org/10.1186/1471-2164-15-145
  • Sroufe, L. A. (2005). Attachment and development: A prospective, longitudinal study from birth to adulthood. Attachment and Human Development, 7(4), 349–367. https://doi.org/10.1080/14616730500365928
  • Sroufe, L. A., Carlson, E. A., Levy, A. K., & Egeland, B. (1999). Implications of attachment theory for developmental psychopathology. Development and Psychopathology, 11(1), 1–13. https://doi.org/10.1017/S0954579499001923
  • ter Braak, C. J. F. (1992). Permutation Versus Bootstrap Significance Tests in Multiple Regression and Anova. In K. Jöckel, G. Rothe, & W. Sendler, (Eds.), Bootstrapping and Related Techniques (pp. 79–85). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48850-4_10
  • Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., … Bertolino, A. (2011). Stress-related methylation of the catechol-O-methyltransferase val158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31(18), 6692–6698. https://doi.org/10.1523/JNEUROSCI.6631-10.2011
  • Van Ijzendoorn, M. H., Schuengel, C., & Bakermans-Kranenburg, M. J. (1999). Disorganized attachment in early childhood: Meta-analysis of precursors, concomitants, and sequelae. Development and Psychopathology, 11(2), 225–249. https://doi.org/10.1017/s0954579499002035
  • Vidrascu, E. M., Bashore, A. C., Howard, T. D., & Moore, J. B. (2019). Effects of early- and mid-life stress on DNA methylation of genes associated with subclinical cardiovascular disease and cognitive impairment: A systematic review. BMC Medical Genetics, 20(1), 1–12. https://doi.org/10.1186/s12881-019-0764-4
  • Walsh, E., Blake, Y., Donati, A., Stoop, R., & Von Gunten, A. (2019). Early secure attachment as a protective factor against later cognitive decline and dementia. Frontiers in Aging Neuroscience, 10(JUL), 161. https://doi.org/10.3389/fnagi.2019.00161
  • Walton, E., Liu, J., Hass, J., White, T., Scholz, M., Roessner, V., … Ehrlich, S. (2014). MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics, 9(8), 1101–1107. https://doi.org/10.4161/epi.29223
  • Waters, H. S., & Waters, E. (2006). The attachment working models concept: Among other things, we build script-like representations of secure base experiences. Attachment & Human Development, 8(3), 185–197. https://doi.org/10.1080/14616730600856016
  • West, K. K., Mathews, B. L., & Kerns, K. A. (2013). Mother-child attachment and cognitive performance in middle childhood: An examination of mediating mechanisms. Early Childhood Research Quarterly, 28(2), 259–270. https://doi.org/10.1016/j.ecresq.2012.07.005