890
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato

, , , , , & show all
Pages 385-391 | Accepted 24 Aug 2017, Published online: 13 Sep 2017

References

  • Anjum, S.A., Farooq, M., Wang, L.C., Xue, L.L., Wang, S.G., Wang, L., … Chen, M. (2011). Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant, Soil and Environment, 57, 326–331.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase In Beta Vulgaris. Plant Physiology, 24(1), 1.
  • Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216. doi:10.1016/j.envexpbot.2005.12.006
  • Ashraf, M., Iqbal, M., Hussain, I., & Rasheed, R. (2015). Physiological and biochemical approaches for salinity tolerance. In Wani, S. H., & Hossain, M. A. (eds). Managing salt tolerance in plants: Molecular and genomic perspectives (p. 79).
  • Ashraf, M.A., Ahmad, M.S.A., Ashraf, M., Al-Qurainy, F., & Ashraf, M.Y. (2011). Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop and Pasture Science, 62, 25–38. doi:10.1071/CP09225
  • Ashraf, M.A., Ashraf, M., & Shahbaz, M. (2012). Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphology, Distribution, Functional Ecology of Plants, 207, 388–397. doi:10.1016/j.flora.2012.03.004
  • Association of Official Analytical Chemists. (2000). Official methods of analysis international (17th ed.). Washington, DC: Author.
  • Ayala, A., Muñoz, M.F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. In Oxidative medicine and cellular longevity (Vol. 2014), Hindawi Publishing Corporation.
  • Barrett-Lennard, E.G. (2003). The interaction between waterlogging and salinity in higher plants: Causes, consequences and implications. Plant and Soil, 253, 35–54. doi:10.1023/A:1024574622669
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. doi:10.1016/0003-2697(71)90370-8
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.
  • Bray, E.A., Bailey-Serres, J., & Weretilnyk, E. (2001). Responses to abiotic stresses. In B.B. Buchanan, W. Gruissem, & R.L. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1203). Rockville, MD: American Society of Plant Physiologist Publication.
  • Chance, B., & Maehly, A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764–775.
  • Cha-um, S., Samphumphuang, T., & Kirdmanee, C. (2013). Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Australian Journal of Crop Science, 7, 213.
  • Chen, T.H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell & Environment, 34, 1–20. doi:10.1111/j.1365-3040.2010.02232.x
  • Cuin, T.A., & Shabala, S. (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment, 30, 875–885. doi:10.1111/j.1365-3040.2007.01674.x
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228. doi:10.1016/j.envexpbot.2014.06.021
  • Demiral, T., & Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56, 72–79. doi:10.1016/j.envexpbot.2005.01.005
  • Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., … Peacock, W.J. (2000). Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany, 51, 89–97. doi:10.1093/jexbot/51.342.89
  • Di Martino, C., Delfine, S., Pizzuto, R., Loreto, F., & Fuggi, A. (2003). Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist, 158, 455–463. doi:10.1046/j.1469-8137.2003.00770.x
  • Ezin, V., Pena, R.D.L., & Ahanchede, A. (2010). Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian Journal of Plant Physiology, 22, 131–142. doi:10.1590/S1677-04202010000200007
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. doi:10.1016/j.plaphy.2010.08.016
  • Greenway, H., Armstrong, W., & Colmer, T.D. (2006). Conditions leading to high CO2 (>5 kPa) in waterlogged–flooded soils and possible effects on root growth and metabolism. Annals of Botany, 98, 9–32. doi:10.1093/aob/mcl076
  • Guinn, E.J., Pegram, L.M., Capp, M.W., Pollock, M.N., & Record, M.T. (2011). Quantifying why urea is a protein denaturant whereas glycine betaine is a protein stabilizer. Proceedings of the National Academy of Sciences, 108, 16932−16937. doi:10.1073/pnas.1109372108
  • Gupta, N., Thind, S.K., & Bains, N.S. (2014). Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regulation, 72, 221–228. doi:10.1007/s10725-013-9853-0
  • Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast: 1. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198. doi:10.1016/0003-9861(68)90654-1
  • Heuer, B. (2003). Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 165, 693–699. doi:10.1016/S0168-9452(03)00222-X
  • Hoque, M.A., Okuma, E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164, 553–561. doi:10.1016/j.jplph.2006.03.010
  • Jokinen, K., & Somersalo, S., Mäkelä, P., Urbano, P., Rojo, C., González, J. M. A., Moure, J.,& Moya, M. (1999). Glycinebetaine from sugar beet enhances the yield of field-grown tomatoes. Acta Horticulturae, 487, 233–236
  • Kaya, C., Ashraf, M., Dikilitas, M., & Tuna, A.L. (2013). Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients – A field trial. Australian Journal of Crop Science, 7, 249.
  • Khalid, A., Zafar, Z.U., Akram, A., Hussain, K., Manzoor, H., Al-Qurainy, F., & Ashraf, M.A. (2015). Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under the salt stress. Journal of Applied Botany and Food Quality, 88, 78 - 86.
  • Kirk, J.T.O., & Allen, R.L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochemical and Biophysical Research Communications, 21, 523–530. doi:10.1016/0006-291X(65)90516-4
  • Kreuzwieser, J., & Rennenberg, H. (2014). Molecular and physiological responses of trees to waterlogging stress. Plant, Cell & Environment, 37, 2245–2259.
  • Kurepin, L.V., Ivanov, A.G., Zaman, M., Pharis, R.P., Hurry, V., & Hüner, N.P. (2017). Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress. In Hou, H. J., Najafpour, M. M., Moore, G. F., & Allakhverdiev, S. I (eds), Photosynthesis: Structures, mechanisms, and applications (pp. 185–202). Springer International Publishing.
  • Lekshmy, S., Jha, S.K., & Sairam, R.K. (2015). Physiological and molecular mechanisms of flooding tolerance in plants. In Pandey, G. K. (ed), Elucidation of abiotic stress signaling in plants (pp. 227–242). Springer New York.
  • Ma, Q.-Q., Wang, W., Li, Y.-H., Li, D.-Q., & Zou, Q. (2006). Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. Journal of Plant Physiology, 163, 165–175. doi:10.1016/j.jplph.2005.04.023
  • Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., & Somersalo, S. (1998). Foliar application of glycinebetaine—A novel product from sugar beet—As an approach to increase tomato yield. Industrial Crops and Products, 7, 139–148. doi:10.1016/S0926-6690(97)00042-3
  • Masood, A., Per, T.S., Asgher, M., Fatma, M., Khan, M.I.R., Rasheed, F., … Khan, N.A. (2016). Glycine betaine: Role in shifting plants toward adaptation under extreme environments. In Iqbal, N., Nazar, R., & Khan, N. A. (eds), Osmolytes and plants acclimation to changing environment: emerging omics technologies (pp. 69–82). Springer India.
  • Meloni, D.A., & Martínez, C.A. (2009). Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings. Brazilian Journal of Plant Physiology, 21, 233–241. doi:10.1590/S1677-04202009000300007
  • Mishra, S.N., & Sharma, I. (1994). Putrescine as a growth inducer and as a source of nitrogen for mustard seedlings under sodium chloride salinity. Indian Journal of Experimental Physiology, 32, 916–918.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. doi:10.1016/S1360-1385(02)02312-9
  • MSTAT Development Team, (2013) Mstat user's guide: a microcomputer program for the design management and analysis of agronomic research experiments. Michigan State University, East Lansing.
  • Mukherjee, S.P., & Choudhuri, M.A. (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58, 166–170. doi:10.1111/ppl.1983.58.issue-2
  • Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767, 414–421. doi:10.1016/j.bbabio.2006.11.019
  • Nawaz, K., & Ashraf, M. (2010). Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. Journal of Agronomy and Crop Science, 196, 28–37. doi:10.1111/jac.2009.196.issue-1
  • Ou, L.J., Dai, X.Z., Zhang, Z.Q., & Zou, X.X. (2011). Responses of pepper to waterlogging stress. Photosynthetica, 49, 339–345. doi:10.1007/s11099-011-0043-x
  • Park, E.-J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., & Chen, T.H. (2004). Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. The Plant Journal, 40, 474–487. doi:10.1111/tpj.2004.40.issue-4
  • Patel, V.B., & Mehta, K. (2015). Betaine in context. In Victor R. P. (ed), Betaine: Chemistry, analysis, function and effects (p. 1).
  • Ponnamperuma, F.N. (1984). Effects of flooding on soils. In T.T Kozlowski (ed), Flooding and plant growth (pp. 9–45).
  • Rahman, S., Miyake, H., & Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science, 5, 33–44. doi:10.1626/pps.5.33
  • Raza, S.H., Ahmad, M.B., Ashraf, M.A., & Shafiq, F. (2014). Time-course changes in growth and biochemical indices of mung bean [Vigna radiata (L.) Wilczek] genotypes under salinity. Brazilian Journal of Botany, 37, 429–439. doi:10.1007/s40415-014-0096-8
  • Raza, S.H., Athar, H.R., Ashraf, M., & Hameed, A. (2007). Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60, 368–376. doi:10.1016/j.envexpbot.2006.12.009
  • Raza, S.H., Athar, H.U.R., & Ashraf, M. (2006). Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pakistan Journal of Botany, 38, 341–351.
  • Ren, B., Zhu, Y., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2016). Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crops Research, 188, 96–104. doi:10.1016/j.fcr.2015.10.016
  • Sairam, R.K., Kumutha, D., Ezhilmathi, K., Chinnusamy, V., & Meena, R.C. (2009). Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biologia Plantarum, 53, 493–504. doi:10.1007/s10535-009-0090-3
  • Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant, Cell & Environment, 25, 163–171. doi:10.1046/j.0016-8025.2001.00790.x
  • Shalata, A., & Neumann, P.M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52, 2207–2211. doi:10.1093/jexbot/52.364.2207
  • Sobahan, M.A., Arias, C.R., Okuma, E., Shimoishi, Y., Nakamura, Y., Hirai, Y., … Murata, Y. (2009). Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. Bioscience, Biotechnology, and Biochemistry, 73, 2037–2042. doi:10.1271/bbb.90244
  • Tiryakioğlu, M., Karanlik, S., & Arslan, M. (2015). Response of bread-wheat seedlings to waterlogging stress. Turkish Journal of Agriculture and Forestry, 39, 807–816. doi:10.3906/tar-1407-124
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant system in acid rain-treated bean plants: Protective roles of exogenous polyamines. Plant Science, 151, 59–66. doi:10.1016/S0168-9452(99)00197-1
  • Walter, S., Heuberger, H., & Schitzler, W.H. (2004). Sensibility of different vegetables to oxygen deficiency and aeration with H2O2 in the rhizosphere. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition (Vol. 659, pp. 499–508).
  • Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science & Plant Analysis, 13, 1035–1059. doi:10.1080/00103628209367332
  • Yiu, J.-C., Liu, C.-W., Fang, D.Y.T., & Lai, Y.-S. (2009). Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiology and Biochemistry, 47, 710–716. doi:10.1016/j.plaphy.2009.03.007
  • Zhang, J.-Y., Huang, S.-N., Wang, G., Xuan, J.-P., & Guo, Z.-R. (2016). Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 106, 244–252. doi:10.1016/j.plaphy.2016.05.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.