283
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Functional characterisation of MdMYB44 as a negative regulator in the response to cold and salt stress in apple calli

, , , &
Pages 347-355 | Accepted 17 Aug 2017, Published online: 13 Sep 2017

References

  • Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., &Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. ThePlant Cell, 15, 63–78. doi:10.1105/tpc.006130
  • Cao, Z.-H., Zhang, S.-Z., Wang, R.-K., Zhang, R.-F., Hao, Y.-J., &Tran, L.-S.P. (2013). Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene conferring abiotic stress tolerance in plants. PLos One, 8, e69955. doi:10.1371/journal.pone.0069955
  • Chen, H., Li, Z.F., &Xiong, L.M. (2012). A plant microRNA regulates the adaptation of roots to drought stress. Febs Letters, 586, 1742–1747. doi:10.1016/j.febslet.2012.05.013
  • Chen, M., Wang, Q.-Y., Cheng, X.-G., Xu, Z.-S., Li, L.-C., Ye, X.-G., … Ma, Y.-Z. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 353, 299–305. doi:10.1016/j.bbrc.2006.12.027
  • Chen, Y.H., Yang, X.Y., He, K., Liu, M.H., Li, J.G., Gao, Z.F., … Qu, L.J. (2006). The MYB transcription factor superfamily of arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60, 107–124. doi:10.1007/s11103-005-2910-y
  • Dong, Q.-L., Liu, D.-D., An, X.-H., Hu, D.-G., Yao, Y.-X., &Hao, Y.-J. (2011). MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. Journal of Plant Physiology, 168, 2124–2133. doi:10.1016/j.jplph.2011.07.001
  • Du, H., Yang, S.-S., Liang, Z., Feng, B.-R., Liu, L., Huang, Y.-B., &Tang, Y.-X. (2012). Genome-wide analysis of the myb transcription factor superfamily in soybean. BMC Plant Biology, 12, 106. doi:10.1186/1471-2229-12-106
  • Gao, S., Zhang, Y.L., Yang, L., Song, J.B., &Yang, Z.M. (2014). AtMYB20 is negatively involved in plant adaptive response to drought stress. Plant and Soil, 376, 433–443. doi:10.1007/s11104-013-1992-6
  • Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., &Covarrubias, A.A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry, 275, 5668–5674. doi:10.1074/jbc.275.8.5668
  • Hemm, M.R., Herrmann, K.M., &Chapple, C. (2001). AtMYB4: A transcription factor general in the battle against UV. Trends in Plant Science, 6, 135–136. doi:10.1016/S1360-1385(01)01915-X
  • Hodges, D.M., DeLong, J.M., Forney, C.F., &Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611. doi:10.1007/s004250050524
  • Jaradat, M.R., Feurtado, J.A., Huang, D., Lu, Y., &Cutler, A.J. (2013). Multiple roles of the transcription factor atmybr1/atmyb44 in aba signaling, stress responses, and leaf senescence. BMC Plant Biology, 13, 1–19. doi:10.1186/1471-2229-13-192
  • Jia, J., Xing, J.-H., Dong, J.-G., Han, J.-M., &Liu, J.-S. (2011). Functional analysis of MYB73 of Arabidopsis thaliana against bipolaris oryzae. Agricultural Sciences in China, 10, 721–727. doi:10.1016/S1671-2927(11)60055-2
  • Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., … Cheong, J.-J. (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology, 146, 623–635. doi:10.1104/pp.107.110981
  • Khraiwesh, B., Zhu, J.-K., &Zhu, J.H. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms, 1819, 137–148. doi:10.1016/j.bbagrm.2011.05.001
  • Kim, J.H., Nguyen Hoai, N., Jeong, C.Y., Ngoc Trinh, N., Hong, S.-W., &Lee, H. (2013). Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. Journal of Plant Physiology, 170, 1461–1465. doi:10.1016/j.jplph.2013.05.011
  • Li, D.D., Shi, W., &Deng, X.X. (2002). Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Reports, 21, 153–156. doi:10.1007/s00299-002-0492-6
  • Li, Q., Zhang, C., Li, J., Wang, L., &Ren, Z. (2012). Genome-wide identification and characterization of R2R3 MYB family in cucumis sativus. PLoS ONE, 7, e47576. doi:10.1371/journal.pone.0047576
  • Ma, S.-Y., &Wu, W.-H. (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology, 65, 511–518. doi:10.1007/s11103-007-9187-2
  • Ogo, Y., Itail, R.N., Nakanishi, H., Kobayashi, T., Takahashi, M., Mori, S., &Nishizawal, N.K. (2007). The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. The Plant Journal, 51, 366–377. doi:10.1111/j.1365-313X.2007.03149.x
  • Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., … Kim, J.K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 138, 341–351. doi:10.1104/pp.104.059147
  • Park, B.-J., Liu, Z.C., Kanno, A., &Kameya, T. (2005). Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regulation, 45, 165–171. doi:10.1007/s10725-004-7924-y
  • Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., &Mattana, M. (2008). Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Reports, 27, 1677–1686. doi:10.1007/s00299-008-0587-9
  • Persak, H., &Pitzschke, A. (2013). Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One, 8, e57547. doi:10.1371/journal.pone.0057547
  • Qiu, Q.-S., Guo, Y., Dietrich, M.A., Schumaker, K.S., &Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 99, 8436–8441. doi:10.1073/pnas.122224699
  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C.Z., Keddie, J., … Yu, C.L. (2000). Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110. doi:10.1126/science.290.5499.2105
  • Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J., & Schachtman, D.P. (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell, 19, 2440–2453. doi:10.1105/tpc.107.050963
  • Singh, K.B., Foley, R.C., & Onate-Sanchez, L. (2002). Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5, 430–436. doi:10.1016/S1369-5266(02)00289-3
  • Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.H.D., & Qu, R.D. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 155, 1–9. doi:10.1016/S0168-9452(99)00247-2
  • Sreenivasulu, N., Sopory, S.K., & Kishor, P.B.K. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388, 1–13. doi:10.1016/j.gene.2006.10.009
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., &Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. doi:10.1093/molbev/msr121
  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 17, 113–122. doi:10.1016/j.copbio.2006.02.002
  • Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., … Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 37, 115–127. doi:10.1046/j.1365-313X.2003.01938.x
  • Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., … Viola, R. (2010). The genome of the domesticated apple (Malus x domestica borkh.). Nature Genetics, 42, 833–839. doi:10.1038/ng.654
  • Wan, B.L., Lin, Y.J., &Mou, T.M. (2007). Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. Febs Letters, 581, 1179–1189. doi:10.1016/j.febslet.2007.02.030
  • Wang, R.-K., Cao, Z.-H., &Hao, Y.-J. (2014). Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiologia Plantarum, 150, 76–87. doi:10.1111/ppl.2014.150.issue-1
  • Yamaguchishinozaki, K., & Shinozaki, K. (1994). A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. ThePlant Cell, 6, 251–264. doi:10.1105/tpc.6.2.251
  • Yang, Z.M., & Chen, J. (2013). A potential role of microRNAs in plant response to metal toxicity. Metallomics, 5, 1184–1190. doi:10.1039/c3mt00022b
  • Yao, Y.-X., Li, M., Liu, Z., Hao, Y.-J., & Zhai, H. (2007). A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiology and Biochemistry, 45, 139–145. doi:10.1016/j.plaphy.2007.01.010
  • Zhang, M., Liang, S.P., & Lu, Y.-T. (2005). Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 1729, 174–185. doi:10.1016/j.bbaexp.2005.04.006
  • Zhou, Z.S., Yang, S.N., Li, H., Zhu, C.C., Liu, Z.P., & Yang, Z.M. (2013). Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. Journal of Hazardous Materials, 252–253, 123–131. doi:10.1016/j.jhazmat.2013.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.