730
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effects of abscisic acid agonist or antagonist applications on aroma volatiles and anthocyanin biosynthesis in grape berries

, , , , , & show all
Pages 392-399 | Accepted 24 Aug 2017, Published online: 28 Sep 2017

References

  • Andrews, P.K., & Li, S. (1995). Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry (Prunus avium L.) fruit. Journal of Horticultural Science, 70, 561–567. doi:10.1080/14620316.1995.11515327
  • Böttcher, C., Boss, P.K., & Davies, C. (2011). Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany, 62, 4267–4280. doi:10.1093/jxb/err134
  • Brummell, D.A., & Harpster, M.H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311–339. doi:10.1023/A:1010656104304
  • Chen, J.-Y., Liu, D.-J., Jiang, Y.-M., Zhao, M.-L., Shan, W., Kuang, J.-F., … Ahn, J.H. (2011). Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. PLoS One, 6, e24649. doi:10.1371/journal.pone.0024649
  • Chervin, C., & Deluc, L. (2010). Ethylene signalling receptors and transcription factors over the grape berry development: Gene expression profiling. Vitis, 49, 129–136.
  • Davies, C., & Robinson, S.P. (2000). Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiology, 122, 803–812. doi:10.1104/pp.122.3.803
  • Deluc, L.G., Grimplet, J., Wheatley, M.D., Tillett, R., Quilici, D.R., Osborne, C., … Cramer, G.R. (2007). Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics, 8, 429. doi:10.1186/1471-2164-8-429
  • Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, M.D., Schlauch, K.A., … Cramer, G.R. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10, 212. doi:10.1186/1471-2164-10-212
  • Deytieux-Belleau, C., Vallet, A., Donèche, B., &Geny, L. (2008). Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiology Biochemistry, 46, 638–646. doi:10.1016/j.plaphy.2008.04.008
  • Engelen, F.A.V., Molthoff, J.W., Conner, A.J., Nap, J.-P., Pereira, A., &Stiekema, W.J. (1995). pBINPLUS: An improved plant transformation vector based on pBIN19. Transgenic Research, 4, 288–290. doi:10.1007/BF01969123
  • Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. Plant Cell, 16, S170–S180. doi:10.1105/tpc.019158
  • Hiratsuka, S., Onodera, H., Kawai, Y., Kubo, T., Itoh, H., &Wada, R. (2001). ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Scientia Horticulturae, 90, 121–130. doi:10.1016/S0304-4238(00)00264-8
  • Jia, H., Wang, C., Zhang, C., Haider, M.S., Zhao, P., Liu, Z., … Fang, J. (2016). Functional analysis of VvBG1 during fruit development and ripening of grape. Journal of Plant Growth Regulation, 35, 987–999. doi:10.1007/s00344-016-9597-y
  • Jia, H.-F., Chai, Y.-M., Li, C.-L., Lu, D., Luo, J.-J., Qin, L., &Shen, Y.-Y. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 157, 188–199. doi:10.1104/pp.111.177311
  • Jia, H.F., Zhang, C., Pervaiz, T., Zhao, P.C., Liu, Z.J., Wang, B.J., … Qian, J.P. (2015). Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea.Functional & Integrative Genomics, 16, 1–16.
  • Ju, Y.-L., Liu, M., Zhao, H., Meng, J.-F., &Fang, Y.-L. (2016). Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules, 21, 1354. doi:10.3390/molecules21101354
  • Kalua, C.M., &Boss, P.K. (2009). Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 57, 3818–3830. doi:10.1021/jf803471n
  • Kevany, B.M., Tieman, D.M., Taylor, M.G., Dalcin, V., &Klee, H.J. (2007). Ethylene receptor degradation controls the timing of the ripening in tomato fruit. Plant Journal, 51, 458–467. doi:10.1111/j.1365-313X.2007.03170.x
  • Kline, K.G., Sussman, M.R., &Jone, A.M. (2010). Abscisic acid receptors. Plant Physiology, 154, 479–482. doi:10.1104/pp.110.160846
  • Kondo, S., Sugaya, S., Sugawa, S., Ninomiya, M., Kittikorn, M., Okawa, K., … Hirai, N. (2012). Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8ʹ-hydroxylase CYP707A. Journal of Plant Physiology, 169, 234–241. doi:10.1016/j.jplph.2011.09.007
  • Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., … Hirai, N. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology, 171, 823–829. doi:10.1016/j.jplph.2014.01.001
  • Kondo, S., Yamada, H., &Setha, S. (2007). Effect of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. Journal of the American Society for Horticultural Science, 132, 120–125.
  • Koyama, R., Assis, A.M., Yamamoto, L.Y., Borges, W.F., Borges, R., Prudêncio, S.H., &Roberto, S.R. (2014). Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from‘Isabel’ grapes (Vitis labrusca L.). Hortscience, 49, 460–464.
  • Lacampagne, S., Gagné, S., &Gény, L. (2009). Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: New elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. Journal of Plant Growth Regulation, 29, 81–90.
  • Meng, L.-S. (2015). Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of constitutive photomorphogenic1. Plant Cell & Environment, 38, 838–851. doi:10.1111/pce.2015.38.issue-4
  • Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., … Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiology, 50, 1345–1363. doi:10.1093/pcp/pcp083
  • Okazaki, M., Nimitkeatkai, H., Muramatsu, T., Aoyama, H., Ueno, K., Mizutani, M., … Todoroki, Y. (2011). Abscinazole-E1, a novel chemical tool for exploring the role of aba 8′-hydroxylase CYP707A. Bioorganic & Medicinal Chemistry, 19, 406–413. doi:10.1016/j.bmc.2010.11.011
  • Rodrigo, M.J., Marcos, J.F., Alférez, F., Mallent, M.D., &Zacarías, L. (2003). Characterization of Pinalate, a novel Citrus sinensis mutant with a fruitspecific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany, 54, 727–738. doi:10.1093/jxb/erg083
  • Sun, L., Sun, Y.F., Zhang, M., Wang, L., Ren, J., Cui, M.M., … Leng, P. (2012). Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology, 158, 283–298. doi:10.1104/pp.111.186866
  • Sun, L., Zhang, M., Ren, J., Qi, J., Zhang, G., &Leng, P. (2010). Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biology, 10, 257. doi:10.1186/1471-2229-10-257
  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., &Mark, R.T. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158. doi:10.1104/pp.105.070706
  • Takeuchi, J., Ohnishi, T., Okamoto, M., &Todoroki, Y. (2015). Conformationally restricted 3ʹ-modified ABA analogs for controlling ABA receptors. Organic & Biomolecular Chemistry, 13, 4278–4288. doi:10.1039/C4OB02662D
  • Walker, A.R., Lee, E., Bogs, J., McDavid, D.A., Thomas, M.R., &Robinson, S.P. (2007). White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant Journal, 49, 772–785. doi:10.1111/j.1365-313X.2006.02997.x
  • Wang, H.C., Huang, H.B., &Huang, X.M. (2007). Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regulation, 52, 189–198. doi:10.1007/s10725-007-9189-8
  • Wang, S., Saito, T., Ohkawa, K., Ohara, H., Shishido, M., Ikeura, H., … Kondo, S. (2016). α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (glomerella cingulata). Journal of Plant Physiology, 192, 90–97. doi:10.1016/j.jplph.2016.01.009
  • Wang, S., Takahashi, H., Saito, T., Okawa, K., Ohara, H., Shishido, M., … Kondo, S. (2015). Jasmonate application influences endogenous abscisic acid, jasmonic acid and aroma volatiles in grapes infected by a pathogen (Glomerella cingulata). Scientia Horticulturae, 192, 166–172. doi:10.1016/j.scienta.2015.06.001
  • Xing, L., Zhao, Y., Gao, J., Xiang, C., &Zhu, J.-K. (2016). The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Reports, 6, 27177. doi:10.1038/srep27177
  • Yamamoto, L.Y., Assis, A.M., Roberto, S.R., Bovolenta, Y.R., Nixdorf, S.L., García-Romero, E., … Hermosín-Gutiérrez, I. (2015). Application of abscisic acid (S-ABA) to cv. Isabel grapes (Vitis vinifera × Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Research International, 77, 572–583. doi:10.1016/j.foodres.2015.10.019
  • Zeevaart, J.A.D., &Creelman, R.A. (1988). Metabolism and physiology of abscisic acid. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 439–473. doi:10.1146/annurev.pp.39.060188.002255
  • Zhang, M., Leng, P., Zhang, G.L., &Li, X.X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252. doi:10.1016/j.jplph.2009.01.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.