154
Views
4
CrossRef citations to date
0
Altmetric
Articles

Response of health-promoting bioactive compounds and related enzyme activities of table grape (Vitis vinifera L.) to deficit irrigation in greenhouse

, , , &
Pages 573-584 | Accepted 18 Dec 2017, Published online: 11 Jan 2018

References

  • Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera, L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97, 956–964. doi:10.1016/j.agwat.2010.01.025
  • Alberdi, G., Rodríguez, V.M., Miranda, J., Macarulla, M.T., Churruca, I., & Portillo, M.P. (2013). Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chemistry, 141, 1530–1535. doi:10.1016/j.foodchem.2013.03.085
  • Allen, R.G., Pereira, L.S., Howell, T.A., & Jensen, M.E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899–920. doi:10.1016/j.agwat.2010.12.015
  • Aron, P.M., & Kennedy, J.A. (2008). Flavan-3-ols: Nature, occurrence and biological activity.[J]. Molecular Nutrition and Food Research, 52, 79–104. doi:10.1002/mnfr.200700137
  • Bavaresco, L., Vezzulli, S., Civardi, S., Gatti, M., Battilani, P., Pietri, A., & Ferrari, F. (2008). Effect of lime-induced chlorosis on ochratoxin-A and stilbenic phytoalexins in grapevine (V. vinifera L.) berries infected by aspergillus carbonarius. Journal of Agricultural and Food Chemistry, 56, 2085–2089.
  • Berdeja, M., Nicolas, P., Kappel, C., Dai, Z.W., Hilbert, G., Peccoux, A., … Delro, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2, 15012. doi:10.1038/hortres.2015.12
  • Bordiga, M., Travaglia, F., Locatelli, M., Coïsson, J.D., & Arlorio, M. (2011). Characterisation of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. cv. Food Chemistry, 127, 180–187. doi:10.1016/j.foodchem.2010.12.141
  • Ca, D.L.L., & Villegas, I. (2005). Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Molecular Nutrition and Food Research, 49, 405–430. doi:10.1002/mnfr.200500022
  • Castellarin, S.D., Matthews, M.A., Di, G.G., & Gambetta, G.A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101–112. doi:10.1007/s00425-007-0598-8
  • Collado-González, M., Guirao-Abad, J.P., Sánchez-Fresneda, R., Belchí-Navarro, S., & Argüelles, J.C. (2012). Resveratrol lacks antifungal activity against Candida albicans. World Journal of Microbiology and Biotechnology, 28, 2441–2446. doi:10.1007/s11274-012-1042-1
  • Conesa, M.R., Falagán, N., Rosa, J.M.D.L., Aguayoet, E., Domingo, R., & Pastor, A.P. (2016). Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes. Agricultural Water Management, 163, 9–18. doi:10.1016/j.agwat.2015.08.026
  • Corpas, F., Fernandez, A., Carreas, A., Valderrama, R., Luque, F., & Esteban, F.J. (2006). The expression of different superoxide dismutase forms is cell-type dependent in olive leaves. Plant & Cell Physiology, 47, 984. doi:10.1093/pcp/pcj071
  • Csuk, R., Albert, S., & Siewert, B. (2013). Synthesis and radical scavenging activities of resveratrol analogs. Archiv Der Pharmazie, 346, 504–510. doi:10.1002/ardp.v346.7
  • Dixon, R.A., & Pavia, N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097. doi:10.1105/tpc.7.7.1085
  • Dixon, R.A., Xie, D.Y., & Sharma, S.B. (2005). Proanthocyanidins – A final frontier in flavonoid research? New Phytologist, 165, 9–28. doi:10.1111/j.1469-8137.2004.01217.x
  • Esfandiari, E.O., Shakiba, M.R., Mahboob, S.A., Alyari, H., & Toorchi, M. (2007). Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Journal of Food Agriculture and Environment, 5, 149–153.
  • Garrido, I., Uriarte, D., Hernández, M., Llerena, J.L., Valdés, M.E., & Espinosa, F. (2016). The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis viniferaL. cv. Tempranillo) grown in semiarid region: Effects of cluster thinning and water deficit. International Journal of Molecular Science, 17, 19–23. doi:10.3390/ijms17111923
  • Gehm, B.D., Mcandrews, J.M., Chien, P.Y., & Jameson, J.L. (1998). Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 94, 14138–14143. doi:10.1073/pnas.94.25.14138
  • Hasan, M., & Bae, H. (2017). An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22, 294. doi:10.3390/molecules22020294
  • Holderbaum, D.F., Kon, T., Kudo, T., & Guerra, M.P. (2010). Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars: Dynamics during fruit development. Hortscience, 45, 1150–1154.
  • Intrigliolo, D.S., & Castel, J.R. (2010). Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrigation Science, 28, 113–125. doi:10.1007/s00271-009-0164-1
  • Intrigliolo, D.S., Lizama, V., García-Esparza, M.J., Abrisqueta, I., & Álvarez, I. (2015). Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agricultural Water Management, 170, 110–119. doi:10.1016/j.agwat.2015.10.020
  • Iora, S.R.F., Maciel, G.M., Zielinski, A.A.F., Silva, M.V.D., Pontes, P.V.D., Haminiuk Cwi, A., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science and Technology, 50, 62–69. doi:10.1111/ijfs.12583
  • Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., & Beecher, C.W. (1997). Cancer chemopreventive activity of resveratrol a natural product derived from grapes. Science, 275, 218–220. doi:10.1126/science.275.5297.218
  • Jeandet, P., Hébrard, C., Deville, M.A., Cordelier, S., Dorey, S., Aziz, A., & Crouzet, J. (2014). Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules, 19, 18033–18056. doi:10.3390/molecules191118033
  • Keller, M., Smithyman, R.P., & Mills, L.J. (2008). Interactive effects of deficit irrigation and crop load on cabernet sauvignon in an arid climate. American Journal of Enology and Viticulture, 59, 221–234.
  • Kennedy, J.A., Saucier, C., & Glories, Y. (2006). Grape and wine phenols: History and perspective. American Journal of Enology and Viticulture, 57, 239–248.
  • Lacampagne, S., Gagné, S., & Gény, L. (2010). Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: New elements regarding the regulation of tannin composition and leuco anthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. Journal of Plant Growth Regulation, 29, 81–90.
  • Langcake, P., & Pryce, R.J. (1976). The production of resveratrol byVitis vinifera and other members of the vitaceae as a response to infection or injury. Physiological Plant Pathology, 9, 77–86. doi:10.1016/0048-4059(76)90077-1
  • Lee, H.S., Ha, A.W., & Kim, W.K. (2012). Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo. Nutrition Research and Practice, 6, 294–300. doi:10.4162/nrp.2012.6.4.294
  • Leyva, A., Quintana, A., Sánchez, M., Rodrı´Guez, E.N., Cremata, J., & Sa´Nchez, J.C. (2008). Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation. Biologicals Journal of the International Association of Biological Standardization, 36, 134.
  • Liu, C.Y., Wang, L.J., Wang, J.F., Wu, B.H., Liu, W., Fan, P. G., Liang, Z.C.,& Li, S.H.(2013). Resveratrols in Vitis berry skins and leaves: Their extraction and analysis by HPLC. Food Chemistry, 136, 643–649. doi:10.1016/j.foodchem.2012.08.017
  • Liu, H.X., Jiang, W.B., Bi, Y., & Luo, Y.B. (2005). Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biology and Technology, 35, 263–269. doi:10.1016/j.postharvbio.2004.08.006
  • Lopes, C.M., Santos, T.P., Monteiroa, A., Rodrigues, M.L., Costa, J.M., & Chaves, M.M. (2011). Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Scientia Horticulturae, 129, 603–612. doi:10.1016/j.scienta.2011.04.033
  • Manna, S.K., Mukhopadhyay, A., & Aggarwal, B.B. (2000). Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kB, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. Journal of Immunology, 164, 6509–6519. doi:10.4049/jimmunol.164.12.6509
  • Milosevic, N., & Slusarenko, A.J. (1996). Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological & Molecular Plant Pathology, 49, 143–158. doi:10.1006/pmpp.1996.0045
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. doi:10.1016/S1360-1385(02)02312-9
  • Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activity in susceptible and resistant wheat heads inoculated with Fusarium graminearum, and induced resistance. Plant Science, 162, 491–498. doi:10.1016/S0168-9452(01)00538-6
  • Nanji, A.A., & French, S.W. (1986). Alcoholic beverages and coronary heart disease. Atherosclerosis, 60, 197–198. doi:10.1016/0021-9150(86)90011-0
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and post veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53, 261–267.
  • Ollé, D., Guiraud, J.L., Souquet, J.M., Terrier, N., Ageorges, A., Cheynier, V., & Verries, C. (2011). Effect of pre- and post-veraison water deficit on proanthocyanidins and anthocyanin accumulation during Shiraz berry development. Australian Journal of Grape and Wine Research, 17, 90–100. doi:10.1111/j.1755-0238.2010.00121.x
  • Orak, H.H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenol oxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111, 235–241. doi:10.1016/j.scienta.2006.10.019
  • Ruan, B.F., Lu, X.Q., Song, J., & Zhu, H.L. (2012). Derivatives of resveratrol: Potential agents in prevention and treatment of cardiovascular disease. Current Medicinal Chemistry, 19, 4175–4183. doi:10.2174/092986712802430054
  • Rusjan, D., Korošec-Koruza, Z., & Veberič, R. (2008). Primary and secondary metabolites related to the quality potential of table grape varieties (Vitis vinifera L.). European Journal of Horticultural Science, 73, 124–130.
  • Samoticha, J., Wojdyło, A., & Golis, T. 2016. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in poland. Food Chemistry, 215, 263-273
  • Sofo, A., Dichio, B., & Xiloyannis, C.; MASIA. (2004). Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Science, 166, 293–302. doi:10.1016/j.plantsci.2003.09.018
  • Tang, S.H., & Luo, C. (2012). Plant physiology experiment tutorial (pp. 126–127). Chongqing: Southwest china normal university press.
  • Tang, Z.H., Wei, M., Cheng, X.G., Shi, X.M., Zhang, A.J., Li, H.M., & Ding, Y.F. (2014). Characters and comprehensive evaluation of nutrient quality of sweet potato storage root with different flesh colors. Scientia Agricultura Sinica, 47, 1705–1714.
  • Tyunin, A.P., & Kiselev, K.V. (2016). Alternations in VaSTS, gene cytosine methylation and t -resveratrol production in response to UV-C irradiation in Vitis amurensis, Rupr. cells. Plant Cell, Tissue and Organ Culture, 124, 33–45. doi:10.1007/s11240-015-0872-6
  • Villangó, S., Szekeres, A., Bencsik, O., Láposi, R., Pálfi, Z., & Zsófi, Z. (2016). The effect of ptveraison water deficit on the phenolic composition and concentration of the Kékfrankos (Vitis vinifera L.) berry. Scientia Horticulturae, 209, 113–116. doi:10.1016/j.scienta.2016.06.010
  • Wang, C.X., Gu, F., Chen, J.L., Yang, H., Jiang, J.J., Du, T.S., & Zhang, J.H. (2015). Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agricultural Water Management, 161, 9–19. doi:10.1016/j.agwat.2015.07.010
  • Wang, F., Kang, S., Du, T., Li, F.S., & Qiu, R.J. (2011). Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98, 1228–1238. doi:10.1016/j.agwat.2011.03.004
  • Wang., L.J., Ma, L., Xi, H.F., Duan, W., Wang, J.F., & Li, S.H. (2013). Individual and combined effects of CaCl2 and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. Journal of Agricultural and Food Chemistry, 61, 7135–7141. doi:10.1021/jf401220m
  • Xi, H.F., Ma, L., Wang, L.N., Li, S.H., & Wang, L.J. (2015). Differential response of the biosynthesis of resveratrols and flavonoids to UV-Cirradiation in grape leaves. New Zealand Journal of Crop and Horticultural Science, 43, 163–172. doi:10.1080/01140671.2014.989862
  • Zarrouk, O., Francisco, R., Pinto-Marijuan, M., Brossa, R., Santos, R.R., Pinheiro, C., Costa, J.M., Lopes, C., & Chaves, M.M. (2012). Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agricultural Water Management, 114, 18–29. doi:10.1016/j.agwat.2012.06.018
  • Zsófi, Z., Villangó, S., Pálfi, Z., Tóth, E., & Bálo, B. (2014). Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under post veraison water deficit. Scientia Horticulturae, 172, 176–182. doi:10.1016/j.scienta.2014.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.