360
Views
14
CrossRef citations to date
0
Altmetric
Articles

Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.)

, , , , , & show all
Pages 24-32 | Accepted 01 Mar 2018, Published online: 22 Mar 2018

References

  • Atsmon, D. (1968). The interaction of genetic, environmental and hormonal factors in stem elongation and floral development of cucumber plants. Annals of Botany, 32, 877–882. doi:10.1093/oxfordjournals.aob.a084257
  • Behera, T.K., Staub, J.E., Behera, S., Delannay, I.Y., & Chen, J.F. (2011). Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica, 178, 261–272. doi:10.1007/s10681-010-0315-8
  • Fazio, G., Staub, J.E., & Stevens, M.R. (2003). Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical and Applied Genetics, 107, 864–874. doi:10.1007/s00122-003-1277-1
  • Fukino, N., Yoshioka, Y., Kubo, N., Hira, M., Sugiyama, M., Sakata, Y., & Matsumoto, S. (2008). Development of 101 novel SSR markers and construction of an SSR-based genetic linkage map in cucumber (Cucumis sativus L.). Breeding Science, 58, 475–483. doi:10.1270/jsbbs.58.475
  • Huang, S.W., Li, R.Q., Zhang, Z.H., Li, L., Gu, X.F., & Fan, W. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281. doi:10.1038/ng.475
  • Jat, G.S., Munshi, A.D., Behera, T.K., Choudhary, H., & Dev, B. (2015). Exploitation of heterosis in cucumber for earliness, yield and yield components utilizing gynoecious lines. Indian Journal of Horticulture, 72, 494–499. doi:10.5958/0974-0112.2015.00112.7
  • Jat, G.S., Munshi, A.D., Behera, T.K., Singh, A.K., & Kumari, S. (2017). Genetic analysis for earliness and yield components using gynoecious and monoecious lines in cucumber (Cucumis sativus L.). Chemical Science Review and Letters, 6, 1075–1079.
  • Jat, G.S., Munshi, A.D., Behera, T.K., & Tomar, B.S. (2016). Combining ability estimation of gynoecious and monoecious hybrids for yield and earliness in cucumber (Cucumis sativus). Indian Journal of Agricultural Sciences, 86, 399–403.
  • Kennard, W.C., Poetter, K., Dijkhuizen, A., Meglic, V., Staub, J.E., & Havey, M.J. (1994). Linkage among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide crosses of cucumber. Theoretical and Applied Genetics, 89, 42–48.
  • Knopf, R.R., & Trebitsh, T. (2006). The Female-Specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiology, 47, 1217–1228. doi:10.1093/pcp/pcj092
  • Kosambi, D.D. (1944). The estimation of map distances from recombination values. Annals of Eugenics, 12, 172–175. doi:10.1111/j.1469-1809.1943.tb02321.x
  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., & Lincoln, S.E. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1, 174–181. doi:10.1016/0888-7543(87)90010-3
  • Li, J., Zhiwei, Q., & Xiuyan, Z. (2011). Genetic analysis of gynoecious in cucumber (Cucumis sativus L.) Institute of Agriculrural Information, Chinese Academy of Agricultural Sciences. Retrived from http://www.caas.net.cn
  • Lou, F.Q., Chen, F.J., Chen, Z.L., & Wolukau, N.J. (2007). Identification of an AFLP marker linked to a locus controlling gynoecy in cucumber and its conversion into SCAR marker useful for plant breeding. Acta Horticulturae, 763, 75–82.
  • Lu, H.W., Miao, H., Tian, G.L., Wehner, T.C., Gu, X.F., & Zhang, S.P. (2015). Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Molecular Breeding, 35, 64. doi:10.1007/s11032-015-0263-z
  • Miao, H., Zhang, S., Wang, X., Zhang, Z., Li, M., Mu, S., … Gu, X. (2011). A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 182, 167–176. doi:10.1007/s10681-011-0410-5
  • Mibus, H., & Tatlioglu, T. (2004). Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 109, 1669–1676. doi:10.1007/s00122-004-1793-7
  • More, T.A., & Munger, H.A. (1987). Effect of temperature and photoperiod on gynoecious sex expression and stability in cucumber. Vegetable Science, 14, 42–50.
  • Murray, M.G., & Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326. doi:10.1093/nar/8.19.4321
  • Panse, V.G., & Sukhatme, P.V. (1985). Statistical methods for agricultural workers (pp. 87–89). New Delhi: Indian Council of Agricultural Research.
  • Park, Y., Sensoy, S., Wye, C., Antonise, R., Peleman, J., & Havey, M.J. (2000). A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ring spot and zucchini yellow mosaic viruses. Genome, 43, 1003–1010. doi:10.1139/g00-075
  • Pati, K., Munshi, A.D., & Behera, T.K. (2015). Inheritance of gynoecism in Cucumber (Cucumis sativus L.) using genotype GBS-1 as gynoecious parent. Genetika, 47, 349–356. doi:10.2298/GENSR1501349P
  • Perl-Treves, R. (1999). Male to female conversion along the cucumber shoot: Approaches to studying sex genes and floral development in Cucumis sativus. In C.C. Ainsworth (Ed.), Sex determination in plants (pp. 189–215). Oxford, GB: BIOS Scientific Publishers.
  • Perl-Treves, R., & Rajagopalan, P.A. (2006). Close, yet separate: Patterns of male and female floral development in monecious species. In C. Ainsworth (Ed.), Flower developemnt and manipulation (pp. 117–146). Oxford: Blackwell.
  • Pierce, L.K., & Wehner, T.C. (1990). Review of genes and linkage groups in cucumber. HortScience, 25, 605–615.
  • Ren, Y., Zhang, Z.H., Liu, J.H., Staub, J.E., Han, Y.H., Cheng, Z., … Ingvarsson, P.K. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One, 4, e5795. doi:10.1371/journal.pone.0005795
  • Serquen, F.C., Bacher, J., & Staub, J.E. (1997b). Mapping and QTL analysis of a narrow cross in cucumber (Cucumis sativus L.) using random amplified polymorphic DNA markers. Molecular Breeding, 3, 257–268. doi:10.1023/A:1009689002015
  • Shengjun, Z., Peng, Z., Yuquing, Z., Xinjuan, C., & Liping, C. (2013). Identification of SSR markers linked to gynoecious loci in cucumber (Cucumis sativus L). Journal of Zhejiang University (Agril. & Life Sci.), 39, 291–298.
  • Shiber, A., Gaur, R.K., Rimon-Knopf, R., Zelcer, A., & Trebitsh, T. (2008, May 21–24). The origin and mode of function of the Female locus in cucumber. In M. Pitrat (Ed.), Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon, France: INRA.
  • Staub, J.E., Chung, S.-M., & Fazio, G. (2005). Conformity and genetic relatedness estimation in crop species having a narrow genetic base: The case of cucumber (Cucumis sativus L.). Plant Breeding, 124, 44–53. doi:10.1111/pbr.2005.124.issue-1
  • Tanksley, S.D. (1983b). Molecular markers in plant breeding. Plant Molecular Biology Reporter, 1, 3–8. doi:10.1007/BF02680255
  • Tanurdzic, M., & Banks, J.A. (2004). Sex-determining mechanisms in land plants. Plant Cell, 16, 61–71. doi:10.1105/tpc.016667
  • Tsao, T.H. (1988). Sex expression in flowering. Acta Phytophysiol Sinica, 14, 203–207.
  • Weng, Y., & Sun, Z.Y. (2012). Major cucurbits (Chapter1). In Y. H. Wang, T. K. Behera, & C. Kole (Ed.), Genetics, genomics and breeding of cucurbits (pp. 1–16). New York: CRC Press.
  • Weng, Y.Q., Johnson, S., Staub, J.E., & Huang, S.W. (2010). An extended microsatellite genetic map of cucumber (Cucumis sativus L). HortScience, 45, 880–886.
  • Wenzel, G., Kennard, W.C., & Havey, M.J. (1995). Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theoretical and Applied Genetics, 91, 53–61. doi:10.1007/BF00220858
  • Yuan, X.J., Pan, J.S., Cai, R., Guan, Y., Liu, L.Z., Zhang, W.W., … Zhu, L.H. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 164, 473–491. doi:10.1007/s10681-008-9722-5
  • Zhang, S., Liu, S., Miao, H., Wang, M., Liu, P., Wehner, T.C., & Gu, X. (2016). Molecular mapping and candidate gene analysis for numerous spines on the fruit of Cucumber. Journal of Heredity, 107, 471–477. doi:10.1093/jhered/esw028
  • Zhang, S.P., Liu, M.M., Miao, H., Zhang, S.Q., Yang, Y.H., Xie, B.Y., … Gu, X.F. (2013). Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Disease, 97, 245–251. doi:10.1094/PDIS-11-11-0941-RE
  • Zhang, S.P., Miao, H., Gu, X.F., Yang, Y.H., Xie, B.Y., Wang, X.W., … Sun, R.F. (2010). Genetic mapping of the scab resistance gene Ccu in cucumber. Journal of the American Society of Horticulture Science, 135, 53–58.
  • Zhang, W.W., He, H., Yuan, G., Du, H., Yuan, L.H., Li, Z., … Cai, R. (2009). Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 120, 645–654. doi:10.1007/s00122-009-1182-3
  • Zhu, W.-Y., Huang, L., Chen, L., Yang, J.-T., Wu, J.-N., Qu, M.-L., … Cai, R. (2016). A high-density genetic linkage map for Cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in Cucumber. Frontiers in Plant Science, 7, 437. doi:10.3389/fpls.2016.00437

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.