166
Views
7
CrossRef citations to date
0
Altmetric
Articles

Genome-wide characterisation of superoxide dismutase genes in grape and their expression analyses during berry development process

ORCID Icon, , , &
Pages 53-64 | Accepted 18 Jul 2019, Published online: 12 Aug 2019

References

  • Alscher, R.G., Erturk, N., & Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331–1341.
  • Bechtold, U., Richard, O., Zamboni, A., Gapper, C., Geisler, M., Pogson, B., … Mullineaux, P.M. (2008). Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. Journal of Experimental Botany, 59, 121–133. doi:10.1093/jxb/erm289
  • Canaguier, A., Grimplet, J., Di Gaspero, G., Scalabrin, S., Duchêne, E., Choisne, N., … Adam-Blondon, A.F. (2017). A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data, 14, 56–62. doi:10.1016/j.gdata.2017.09.002
  • Cannon, R.E., & Scandalios, J.G. (1989). Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize. Molecular and General Genetics, 219, 1–8.
  • Carmody, M., Crisp, P.A., D’Alessandro, S., Ganguly, D., Gordon, M., Havaux, M., … Pogson, B.J. (2016). Uncoupling high light responses from singlet oxygen retrograde signaling and spatial-temporal systemic acquired acclimation. Plant Physiology, 171, 1734–1749. doi:10.1104/pp.16.00404
  • Coombe, B.G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1, 104–110. doi:10.1111/j.1755-0238.1995.tb00086.x
  • Downey, M.O., Harvey, J.S., & Robinson, S.P. (2003). Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 9, 110–121. doi:10.1111/j.1755-0238.2003.tb00261.x
  • Fasoli, M., Dal Santo, S., Zenoni, S., Tornielli, G.B., Farina, L., Zamboni, A., … Pezzotti, M. (2012). The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. The Plant Cell, 24, 3489–3505. doi:10.1105/tpc.112.100230
  • Feng, K., Yu, J., Cheng, Y., Ruan, M., Wang, R., Ye, Q., … Wan, H. (2016). The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science, 7, 1279–1291. doi:10.3389/fpls.2016.01279
  • Feng, X., Lai, Z., Lin, Y., Lai, G., & Lian, C. (2015). Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 16, 823–839. doi:10.1186/s12864-015-2046-7
  • Filiz, E., & Tombuloğlu, H. (2014). Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor. Turkish Journal of Biology, 39, 49–59. doi:10.3906/biy-1403-9
  • Fink, R.C., & Scandalios, J.G. (2002). Molecular evolution and structure–Function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochemistry and Biophysics, 399, 19–36. doi:10.1006/abbi.2001.2739
  • Grimplet, J., Adam-Blondon, A., Bert, P., Bitz, O., Cantu, D., Davies, C., … Cramer, G.R. (2014). The grapevine gene nomenclature system. BMC Genomics, 15, 1077. doi:10.1186/1471-2164-15-1077
  • Gu, Z., Cavalcanti, A., Chen, F., Bouman, P., & Li, W. (2002). Extent of gene duplication in the genomes of drosophila, nematode, and yeast. Molecular Biology and Evolution, 19, 256–262. doi:10.1093/oxfordjournals.molbev.a004079
  • Guo, D.L., Guo, M.X., & Zhang, G.H. (2014). Comparisons of berry development characteristics between the early ripening bud mutants of grape and their parents. Plant Physiology Journal, 5, 1733–1741.
  • Guo, D.L., Li, Q., Zhao, H.L., Wang, Z.G., Zhang, G.H., & Yu, Y.H. (2019c). The variation of berry development and DNA methylation after treatment with 5-azaC on‘Kyoho’ grape. Scientia Horticulturae, 246, 265–271. doi:10.1016/j.scienta.2018.11.006
  • Guo, D.L., Wang, Z.G., Li, Q., Gu, S.C., Zhang, G.H., & Yu, Y.H. (2019b). Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Australian Journal of Grape and Wine Research, 25, 357–362.
  • Guo, D.L., Xi, F.F., Yu, Y.H., Zhang, X.Y., Zhang, G.H., & Zhong, G.Y. (2016a). Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’ and its early-ripening mutant ‘Fengzao’. BMC Genomics, 17, 795–812. doi:10.1186/s12864-016-3051-1
  • Guo, D.L., Yu, Y.H., Xi, F.F., Shi, Y.Y., & Zhang, G.H. (2016b). Histological and molecular characterization of grape early ripening bud mutant. International Journal of Genomics, 2016, 1–7.
  • Guo, D.L., & Zhang, G.H. (2015). A new early-ripening grape cultivar-’Fengzao’. Acta Horticulturae, 1082, 153–156.
  • Guo, D.L., Zhang, Q., & Zhang, G.H. (2013). Characterization of grape cultivars from China using microsatellite markers. Czech Journal of Genetics and Plant Breeding, 49, 164–170. doi:10.17221/32/2013-CJGPB
  • Guo, D.-L., Zhao, H.L., Li, Q., Zhang, G.H., Jiang, J.F., Liu, C.H., … Yu, Y.H. (2019a). Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Horticulture Research, 6. doi:10.1038/s41438-018-0089-z
  • Guo, D.L., Zhao, H.L., Zhang, G.H., & Yu, Y.H. (2019). Transmission of early ripening trait related loci in grapevines from backbone cultivar Pearl of Csaba to its descendants. Scientia Horticulturae, 244, 151–156. doi:10.1016/j.scienta.2018.09.043
  • Hu, B., Jin, J., Guo, A., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31, 1296–1297. doi:10.1093/bioinformatics/btu817
  • Hu, X., Hao, C., Cheng, Z., & Zhong, Y. (2019). Genome-wide identification, characterization, and expression analysis of the grapevine superoxide dismutase (SOD) family. International Journal of Genomics, 2019, 1–13. doi:10.1155/2019/7350414
  • Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: Classifying and distinguishing between models. Nature Reviews Genetics, 11, 97–108. doi:10.1038/nrg2689
  • Kliebenstein, D.J., Monde, R., & Last, R.L. (1998). Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 118, 637–650. doi:10.1104/pp.118.2.637
  • Kumar, V., Irfan, M., Ghosh, S., Chakraborty, N., Chakraborty, S., & Datta, A. (2016). Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma, 253, 581–594. doi:10.1007/s00709-015-0836-z
  • Leng, X., Wang, P., Zhu, X., Li, X., Zheng, T., Shangguan, L., … Fang, J. (2017). Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. Functional & Integrative Genomics, 17, 697–710. doi:10.1007/s10142-017-0565-9
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., … Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327. doi:10.1093/nar/30.1.325
  • Lin, Y., & Lai, Z. (2013). Superoxide dismutase multigene family in longan somatic embryos: A comparison of CuZn-SOD, Fe-SOD, and Mn-SOD gene structure, splicing, phylogeny, and expression. Molecular Breeding, 32, 595–615. doi:10.1007/s11032-013-9892-2
  • Liu, C.H., Pan, X., Guo, J.N., Fan, X.C., & Kong, Q.S. (2004). Evaluation on the diversity of maturity time of grape cultivars and its classification. Journal of Fruit Science, 21, 535–539.
  • Liu, J.Y., Chen, N.N., Cheng, Z.M., & Xiong, J.S. (2016). Genome-wide identification, annotation and expression profile analysis of SnRK2 gene family in grapevine. Australian Journal of Grape and Wine Research, 22, 478–488. doi:10.1111/ajgw.12223
  • Lozano, R., Hamblin, M.T., Prochnik, S., & Jannink, J. (2015). Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 16, 360–374. doi:10.1186/s12864-015-1554-9
  • Ma, Q., & Yang, J. (2019). Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Gene, 680, 84–96. doi:10.1016/j.gene.2018.09.033
  • Miller, A. (2012). Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 586, 585–595. doi:10.1016/j.febslet.2011.10.048
  • Minio, A., Massonnet, M., Figueroa-Balderas, R., Vondras, A.M., Blanco-Ulate, B., & Cantu, D. (2019). Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3-Genes Genomes Genetics, 9, 755–767.
  • Molina-Rueda, J.J., Tsai, C.J., & Kirby, E.G. (2013). The Populus Superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a). PloS One, 8, e56421–e56435. doi:10.1371/journal.pone.0056421
  • Mullineaux, P.M., Karpinski, S., & Baker, N.R. (2006). Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiology, 141, 346–350. doi:10.1104/pp.106.078162
  • Pilati, S., Brazzale, D., Guella, G., Milli, A., Ruberti, C., Biasioli, F., … Moser, C. (2014). The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biology, 14, 87. doi:10.1186/1471-2229-14-87
  • Puget, K., & Michelso, A.M. (1974). Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochemical and Biophysical Research Communications, 58, 830–838. doi:10.1016/s0006-291x(74)80492-4
  • Qiao, X., Li, M., Li, L., Yin, H., Wu, J., & Zhang, S. (2015). Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology, 15, 12–28. doi:10.1186/s12870-014-0401-5
  • Razzaq, K., Khan, A.S., Malik, A.U., & Shahid, M. (2013). Ripening period influences fruit softening and antioxidative system of ‘Samar Bahisht Chaunsa’ mango. Scientia Horticulturae, 160, 108–114. doi:10.1016/j.scienta.2013.05.018
  • Schmittgen, T.D., & Livak, K.J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.
  • Wang, D., Zhang, Y., Zhang, Z., Zhu, J., & Yu, J. (2010). KaKs_calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics, 8, 77–80. doi:10.1016/S1672-0229(10)60008-3
  • Wang, L., Wang, L., Zhang, Z., Ma, M., Wang, R., Qian, M., … Zhang, S. (2018). Genome-wide identification and comparative analysis of the superoxide dismutase gene family in pear and their functions during fruit ripening. Postharvest Biology and Technology, 143, 68–77. doi:10.1016/j.postharvbio.2018.04.012
  • Wang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., … Shen, F. (2016a). Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. Plant Gene, 6, 18–29. doi:10.1016/j.plgene.2016.02.002
  • Wang, W., Xia, M.X., Chen, J., Yuan, R., Deng, F.N., & Shen, F.F. (2016b). Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry-Moscow, 81, 465–480. doi:10.1134/S0006297916050047
  • Wang, W., Zhang, X., Deng, F., Yuan, R., & Shen, F. (2017). Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum. BMC Genomics, 18, 376–401. doi:10.1186/s12864-017-3768-5
  • Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., … Paterson, A.H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49. doi:10.1093/nar/gkr1293
  • Wolfe-Simon, F., Grzebyk, D., Schofield, O., & Falkowski, P.G. (2005). The role and evolution of superoxide dissmutases in algae. Journal of Phycology, 41, 453–465. doi:10.1111/j.1529-8817.2005.00086.x
  • Xi, F.F., Guo, L.L., Yu, Y.H., Wang, Y., Li, Q., Zhao, H.L., & Guo, D.L. (2017). Comparison of reactive oxygen species metabolism during grape berry development between ‘Kyoho’ and its early ripening bud mutant ‘Fengzao’. Plant Physiology and Biochemistry, 118, 634–642. doi:10.1016/j.plaphy.2017.08.007
  • Xi, Y., Liu, J.Y., Dong, C., & Cheng, Z.M. (2017). The CBL and CIPK gene family in grapevine (Vitis vinifera): Genome-wide analysis and expression profiles in response to various abiotic stresses. Frontiers in Plant Science, 8, 978. doi:10.3389/fpls.2017.00978
  • Xu, G.X., Guo, C., Shan, H.Y., & Kong, H.Z. (2012). Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences, 109, 1187–1192. doi:10.1073/pnas.1109047109
  • Zhao, T., Xia, H., Liu, J.Y., & Ma, F.W. (2014). The gene family of dehydration responsive element-binding transcription factors in grape (Vitis vinifera): Genome-wide identification and analysis, expression profiles, and involvement in abiotic stress resistance. Molecular Biology Reports, 41, 1577–1590. doi:10.1007/s11033-013-3004-6
  • Zhou, Y., Hu, L., Wu, H., Jiang, L., & Liu, S. (2017). Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. International Journal of Genomics, 2017, 1–14. doi:10.1155/2017/7243973

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.