439
Views
6
CrossRef citations to date
0
Altmetric
Articles

Genome-wide analysis of alternative splicing events during response to drought stress in tomato (Solanum lycopersicum L.)

, , , , &
Pages 286-293 | Accepted 12 Aug 2019, Published online: 29 Aug 2019

References

  • Alter, S., Bader, K.C., Spannagl, M., Wang, Y., Bauer, E., Schön, C.C., & Mayer, K.F. (2015). DroughtDB: An expert-curated compilation of plant drought stress genes and their homologs in nine species. Database: The Journal of Biological Databases and Curation, 2015, bav046. doi:10.1093/database/bav046
  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58. doi:10.1080/07352680590910410
  • Beretta, S., Bonizzoni, P., Vedova, G.D., Pirola, Y., & Rizzi, R. (2014). Modeling alternative splicing variants from RNA-Seq data with isoform graphs. Journal of Computational Biology, 21, 16–40. doi:10.1089/cmb.2013.0112
  • Black, D.L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72, 291–336. doi:10.1146/annurev.biochem.72.121801.161720
  • Choi, J.H., Kim, H., & Hyun, T.K. (2018). Transcriptome analysis of Abeliophyllum distichum NAKAI reveals potential molecular markers and candidate genes involved in anthocyanin biosynthesis pathway. South African Journal of Botany, 116, 34–41. doi:10.1016/j.sajb.2018.02.401
  • Cruz de Carvalho, M.H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3, 156–165. doi:10.4161/psb.3.3.5536
  • Eom, S.H., Baek, S.A., Kim, J.K., & Hyun, T.K. (2018). Transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress. Molecules, 23, 1186. doi:10.3390/molecules23051186
  • Feng, J., Li, J., Gao, Z., Lu, Y., Yu, J., Zheng, Q., … Zhu, Z. (2015). SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Molecular Plant, 8, 1038–1052. doi:10.1016/j.molp.2015.01.011
  • Fracasso, A., Trindade, L.M., & Amaducci, S. (2016). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16, 115. doi:10.1186/s12870-016-0796-2
  • Huang, X., Ouyang, X., & Deng, X.W. (2014). Beyond repression of photomorphogenesis: Role switching of COP/DET/FUS in light signaling. Current Opinion in Plant Biology, 21, 96–103. doi:10.1016/j.pbi.2014.07.003
  • Kalsotra, A., & Cooper, T.A. (2011). Functional consequences of developmentally regulated alternative splicing. Nature Reviews Genetics, 12, 715–729. doi:10.1038/nrg3052
  • Kianianmomeni, A., Ong, C.S., Ratsch, G., & Hallmann, A. (2014). Genome-wide analysis of alternative splicing in Volvox carteri. BMC Genomics, 15, 1117. doi:10.1186/1471-2164-15-1117
  • Kim, D., Langmead, B., & Salzberg, S.L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. doi:10.1038/nmeth.3317
  • Kim, J.Y., Song, J.T., & Seo, H.S. (2017). COP1 regulates plant growth and development in response to light at the post-translational level. Journal of Experimental Botany, 68, 4737–4748. doi:10.1093/jxb/erx312
  • Laloum, T., Martín, G., & Duque, P. (2018). Alternative splicing control of abiotic stress responses. Trends in Plant Science, 23, 140–150. doi:10.1016/j.tplants.2017.09.019
  • Lee, J.H., Kim, S.H., Kim, J.J., & Ahn, J.H. (2012). Alternative splicing and expression analysis of high expression of osmotically responsive genes1 (HOS1) in Arabidopsis. BMB Reports, 45, 515–520. doi:10.5483/bmbrep.2012.45.9.092
  • Li, Q., Xiao, G., & Zhu, Y.X. (2014). Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. Molecular Plant, 7, 829–840. doi:10.1093/mp/sst175
  • Lin, W.Y., Matsuoka, D., Sasayama, D., & Nanmori, T. (2010). A splice variant of Arabidopsis mitogen-activated protein kinase and its regulatory function in the MKK6-MPK13 pathway. Plant Science, 178, 245–250. doi:10.1016/j.plantsci.2010.01.006
  • Liu, Z., Qin, J., Tian, X., Xu, S., Wang, Y., Li, H., … Sun, Q. (2018). Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnology Journal, 16, 714–726. doi:10.1111/pbi.12822
  • Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., … Yamaguchi-Shinozaki, K. (2010). Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics & Genomics, 283, 185–196. doi:10.1007/s00438-009-0506-y
  • Ninomiya, K., Kataoka, N., & Hagiwara, M. (2011). Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. Journal of Cell Biology, 195, 27–40. doi:10.1083/jcb.201107093
  • Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., & Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667. doi:10.1038/nprot.2016.095
  • Pimentel, H., Parra, M., Gee, S.L., Mohandas, N., Pachter, L., & Conboy, J.G. (2016). A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Research, 44, 838–851. doi:10.1093/nar/gkv1168
  • Reddy, A.S., Marquez, Y., Kalyna, M., & Barta, A. (2013). Complexity of the alternative splicing landscape in plants. The Plant Cell, 25, 3657–3683. doi:10.1105/tpc.113.117523
  • Ruan, J., Guo, F., Wang, Y., Li, X., Wan, S., Shan, L., & Peng, Z. (2018). Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.). BMC Plant Biology, 18, 139. doi:10.1186/s12870-018-1339-9
  • Serrano, I., Campos, L., & Rivas, S. (2018). Roles of E3 ubiquitin-ligases in nuclear protein homeostasis during plant stress responses. Frontiers in Plant Science, 9, 139. doi:10.3389/fpls.2018.00139
  • Shang, X., Cao, Y., & Ma, L. (2017). Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. International Journal of Molecular Sciences, 18, E432. doi:10.3390/ijms18020432
  • Shankar, R., Bhattacharjee, A., & Jain, M. (2016). Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Science Reports, 6, 23719. doi:10.1038/srep23719
  • Sharma, B., Joshi, D., Yadav, P.K., Gupta, A.K., & Bhatt, T.K. (2016). Role of ubiquitin-mediated degradation system in plant biology. Frontiers in Plant Science, 7, 806. doi:10.3389/fpls.2016.00806
  • Sivakumar, R., Nandhitha, G.K., & Nithila, S. (2017). Impact of drought on chlorophyll, soluble protein, abscisic acid, yield and quality characters of contrasting genotypes of tomato (Solanum lycopersicum). British Journal of Applied Science & Technology, 21, 1–10. doi:10.9734/BJAST/2017/34347
  • Staiger, D., & Brown, J.W. (2013). Alternative splicing at the intersection of biological timing, development, and stress responses. The Plant Cell, 25, 3640–3656. doi:10.1105/tpc.113.113803
  • Stone, S.L. (2014). The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers in Plant Science, 5, 135. doi:10.3389/fpls.2014.00135
  • Syed, N.H., Kalyna, M., Marquez, Y., Barta, A., & Brown, J.W. (2012). Alternative splicing in plants-coming of age. Trends in Plant Science, 17, 616–623. doi:10.1016/j.tplants.2012.06.001
  • Szakonyi, D., & Duque, P. (2018). Alternative splicing as a regulator of early plant development. Frontiers in Plant Science, 9, 1174. doi:10.3389/fpls.2018.01174
  • Thatcher, S.R., Danilevskaya, O.N., Meng, X., Beatty, M., Zastrow-Hayes, G., Harris, C., … Li, B. (2016). Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiology, 170, 586–599. doi:10.1104/pp.15.01267
  • Thiyagarajan, G., Rajakumar, D., Kumaraperumal, R., & Manikandan, M. (2009). Physiological responses of groundnut (Arachis hypogaea L.) to moisture stress: A review. Agricultural Reviews, 30, 192–198.
  • Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016). Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7, 645. doi:10.3389/fpls.2016.00645
  • Vu, J.C.V., Gesch, R.W., Allen, L.H., Boote, K.J., & Bowes, G. (1999). CO2 enrichment delaysarapid, drought-induced decrease in Rubisco small subunit transcript abundance. Journal of Plant Physiology, 155, 139–142. doi:10.1016/S0176-1617(99)80156-4
  • Wai, C.M., Powell, B., Ming, R., & Min, X.J. (2016). Analysis of alternative splicing landscape in pineapple (Ananas comosus). Tropical Plant Biology, 3, 1–11.
  • Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., … Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476. doi:10.1038/nature07509
  • Wei, H., Lou, Q., Xu, K., Yan, M., Xia, H., Ma, X., … Luo, L. (2017). Alternative splicing complexity contributes to genetic improvement of drought resistance in the rice maintainer HuHan2B. Science Reports, 7, 11686. doi:10.1038/s41598-017-12020-3
  • Wenping, H., Yuan, Z., Jie, S., Lijun, Z., & Zhezhi, W. (2011). De vono transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics, 98, 272–279. doi:10.1016/j.ygeno.2011.03.012
  • Wong, J.J., Au, A.Y., Ritchie, W., & Rasko, J.E. (2016). Intron retention in mRNA: No longer nonsense: Known and putative roles of intron retention in normal and disease biology. Bioessays, 38, 41–49. doi:10.1002/bies.201500117
  • Yap, K., Lim, Z.Q., Khandelia, P., Friedman, B., & Makeyev, E.V. (2012). Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes & Development, 26, 1209–1223. doi:10.1101/gad.188037.112
  • Yeo, G., Holste, D., Kreiman, G., & Burge, C.B. (2004). Variation in alternative splicing across human tissues. Genome Biology, 5, R74. doi:10.1186/gb-2004-5-10-r74
  • Zhang, Y., Zhang, X., Wang, Y.H., & Shen, S.K. (2017). De novo assembly of transcriptome and development of novel est-ssr markers in Rhododendron rex Lévl. through Illumina sequencing. Frontiers in Plant Science, 26, 1664. doi:10.3389/fpls.2017.01664
  • Zhou, D.X., Kim, Y.J., Li, Y.F., Carol, P., & Mache, R. (1998). COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis. Molecular Genetics & Genomics, 257, 387–391. doi:10.1007/s004380050662
  • Zhu, G., Li, W., Zhang, F., & Guo, W. (2018). RNA-seq analysis reveals alternative splicing under salt stress in cotton. Gossypium Davidsonii. BMC Genomics, 19, 73.
  • Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167, 313–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.