356
Views
23
CrossRef citations to date
0
Altmetric
Articles

Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress

, &
Pages 247-259 | Accepted 23 Aug 2019, Published online: 05 Sep 2019

References

  • Abdelgawad, Z.A., Khalafaallah, A.A., & Abdallah, M.M. (2014). Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agricultural Science, 5, 1077–1088.
  • Agong, S.G., Yoshida, Y., Yazawa, S., & Masuda, M. (2004). Tomato response to salt stress. Acta Horticulturae, 637, 93–97. doi:10.17660/ActaHortic.2004.637.10
  • Ahmad, P., Alyemeni, M.N., Ahanger, M.A., Wijaya, L., Alam, P., Kumar, A., & Ashraf, M. (2018). Up-regulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. Journal of Plant Interactions, 13, 151–162. doi:10.1080/17429145.2018.1441452
  • Ahmad, P., & Jhon, R. (2005). Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archives of Agronomy and Soil Science, 51, 665–672. doi:10.1080/03650340500274151
  • Al-Aghabary, K., Zhu, Z., & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101–2115. doi:10.1081/PLN-200034641
  • Anjum, S.A., Wang, L., Farooq, M., Khan, I., & Xue, L. (2011). Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. Journal of Agronomy and Crop Science, 197, 296–301. doi:10.1111/jac.2011.197.issue-4
  • Anuradha, S., & Rao, S.S.R. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32. doi:10.1023/A:1023080720374
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Arnon, D. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. doi:10.1104/pp.24.1.1
  • Ashraf, M., Karim, F., & Rasul, E. (2002). Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulation, 36, 49–59. doi:10.1023/A:1014780630479
  • Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., de Abrau, C.E.B., & Gomez-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes. Environmental and Experimental Botany, 56, 87–94. doi:10.1016/j.envexpbot.2005.01.008
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free Proline for water stress studies. Plant and Soil, 39, 205–208. doi:10.1007/BF00018060
  • Bidabadi, S.S., Mehri, H., Ghobadi, C., Baninasab, B., & Afazel, M. (2013). Morphological, physiological and antioxidant responses of some Iranian grape vine cultivars to methyl jasmonate application. Journal of Crop Science and Biotechnology, 16, 277–283. doi:10.1007/s12892-013-0096-4
  • Boeckx, T., Winters, A.L., Webb, K.J., & Kingston-Smith, A.H. (2015). Polyphenol oxidase in leaves: Is there any significance to the chloroplastic localization? Journal of Experimental Botany, 66, 3571–3579. doi:10.1093/jxb/erv141
  • Borsani, O., Valpuesta, V., & Botella, M.A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030. doi:10.1104/pp.126.3.1024
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3
  • Cao, S.F., Zheng, Y.H., Wang, K.T., Jin, P., & Rui, H.J. (2009). Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in post harvest loquat fruit. Food Chemistry, 115, 1458–1463. doi:10.1016/j.foodchem.2009.01.082
  • Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560. doi:10.1093/aob/mcn125
  • Chen, G., & Asada, K. (1992). Inactivation of ascorbate peroxidase by thoils requires hydrogen peroxide. Plant & Cell Physiology, 33, 117–123.
  • Chen, H., Jiang, J.G., & Wu, G.H. (2009). Effect effects of salinity changes on the growth of Dunaliella salina and its isozyme activates activities of glycerol-3-phosphate dehydrogenase. Journal of Agricultural and Food Chemistry, 57, 6178–6182. doi:10.1021/jf900447r
  • Chen, L.M., Lin, C.C., & Kao, C.H. (2000). Copper toxicity in the rice seedlings: Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin, 41, 99–103.
  • Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168, 241–248. doi:10.1016/j.plantsci.2004.07.039
  • Creelman, R.A., & Mullet, J.E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381. doi:10.1146/annurev.arplant.48.1.355
  • Dubey, R.S., & Singh, A.K. (1999). Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum, 42, 233–239. doi:10.1023/A:1002160618700
  • Duran-Serantes, B., Gonzalez, L., & Reigosa, M.J. (2002). Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerata. Acta Physiologiae Plantarum / Polish Academy of Sciences, Committee of Plant Physiology Genetics and Breeding, 24, 385–392. doi:10.1007/s11738-002-0034-4
  • Einali, A. (2018). The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity. Protoplasma, 255, 601–611. doi:10.1007/s00709-017-1173-1
  • Einali, A., & Valizadeh, J. (2015). Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing b-carotene production. Acta Physiologiae Plantarum / Polish Academy of Sciences, Committee of Plant Physiology Genetics and Breeding, 37, 83. doi:10.1007/s11738-015-1832-9
  • Einali, A., & Valizadeh, J. (2017). Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees, 31, 659–671. doi:10.1007/s00468-016-1498-y
  • Einali, A.R., & Sadeghipour, H.R. (2007). The alleviation of dormancy in walnut kernels by moist chilling is independent from storage protein mobilization. Tree Physiology, 27, 519–525. doi:10.1093/treephys/27.4.519
  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three Soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188, 86–93. doi:10.1046/j.1439-037X.2002.00537.x
  • Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010–1016. doi:10.1016/j.ecoenv.2017.09.070
  • Fedina, I.S., & Benderliev, K.M. (2000). Response of Scenedesmus incrassatulus to salt stress as affected by methyl jasmonate. Biologia Plantarum, 43, 625–627. doi:10.1023/A:1002816502941
  • Fedina, I.S., & Tsonev, T.D. (1997). Effect of pretreatment with methyl jasmonate on the response of Pisum sativum to salt stress. Journal of Plant Physiology, 151, 735–740. doi:10.1016/S0176-1617(97)80071-5
  • Flowers, T.J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319. doi:10.1093/jxb/erh003
  • Foyer, C.H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119, 355–364. doi:10.1034/j.1399-3054.2003.00223.x
  • Gadallah, M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42, 249–257. doi:10.1023/A:1002164719609
  • Gapinska, M., Skodowska, M., & Gabara, B. (2008). Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum, 30, 11–18. doi:10.1007/s11738-007-0072-z
  • Garg, N., & Manchanda, G. (2009). ROS generation in plants: Boon or bane? Plant biosystems, 143, 81–96. doi:10.1080/11263500802633626
  • Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930. doi:10.1016/j.plaphy.2010.08.016
  • Handel, E.V. (1968). Direct micro determination of sucrose. Anal of Biochemistry, 22, 280–283.
  • Imlay, J.A. (2003). Pathway of oxidative damage. Annual Review of Microbiology, 57, 395–418. doi:10.1146/annurev.micro.57.030502.090938
  • Iqbal, N., Umar, S., & Khan, N.A. (2015). Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). Journal of Plant Physiology, 178, 84–91. doi:10.1016/j.jplph.2015.02.006
  • Kaur, H., Sharma, P., & Sirhindi, G. (2013). Sugar accumulation and its regulation by jasmonic acid in Brassica napus L. under salt stress. J Stress Physiol Biochem, 9, 53–64.
  • Khadri, M., Tejera, N.A., & Lluch, C. (2006). Alleviation of salt stress in common bean by exogenous abscisic acid supply. Journal of Plant Growth Regulation, 25, 110–119. doi:10.1007/s00344-005-0004-3
  • Khattab, H. (2007). Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline conditions. Australian Journal of Basic and Applied Sciences, 1, 323–334.
  • Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., … Sudhakar, C. (2006). Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Plantarum, 50, 219–226. doi:10.1007/s10535-006-0010-8
  • Li, J.T., Qiu, Z.B., Zhang, X.W., & Wang, L.S. (2011). Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiologiae Plantarum, 33, 835–842. doi:10.1007/s11738-010-0608-5
  • Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1– F4.3.8. doi:10.1002/0471142913.faf0403s01
  • Liu, X., Chi, H., Yue, M., Zhang, X.F., Li, W.J., & Jia, E.P. (2012). The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. Journal of Plant Growth Regulation, 31, 436–447. doi:10.1007/s00344-011-9253-5
  • Liu, X., Li, S., Feng, C., & Yan, D. (2002). Advances in the study of Momordica charantia L. Zhong Yao Cai, 25, 211–213.
  • Luck, H. (1965). Catalase. In: H.U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 885–894). Weinheim: Verlage Chemie.
  • Mahmood, M., Bidabadi, S.S., Ghobadi, C., & Gray, D.J. (2012). Effect of methyl jasmonate treatments on alleviation of polyethyleneglycol-mediated water stress in banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tip cultures. Plant Growth Regulation, 68, 161–169. doi:10.1007/s10725-012-9702-6
  • Manan, A.C.M., Pervez, M.A., & Ahmad, R. (2016). Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pakistan Journal of Agricultural Sciences, 53, 35–41.
  • Markwell, M.A.K., Hass, S.M., Tolbert, N.E., & Bieber, L.L. (1981). Protein determination in membrane and lipoprotein samples: Manual and automated procedures. Methods in Enzymology, 72, 296–303.
  • McCready, R.M., Guggolz, J., Silviera, V., & Owens, H.S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22, 1156–1158. doi:10.1021/ac60045a016
  • McSteen, P., & Zhao, Y. (2008). Plant hormones and signaling: Common themes and new developments. Developmental Cell, 14, 467–473. doi:10.1016/j.devcel.2008.03.013
  • Mersie, W., & Singh, M. (1993). Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. Journal of Chemical Ecology, 19, 1293–1130. doi:10.1007/BF00984876
  • Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428. doi:10.1021/ac60147a030
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. doi:10.1016/S1360-1385(02)02312-9
  • Mohamedin, A.A.M., El-Kader, A.A., & Badran, N.M. (2006). Response of sunflower (Helianthus annuus L.) to plants salt stress under different water table depths. Journal of Applied Sciences Research, 2, 1175–1184.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 9, 651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867–880.
  • Neill, S., Desikan, R., & Hancock, J. (2002). Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5, 388–395. doi:10.1016/S1369-5266(02)00282-0
  • Parida, A.K., Das, A.B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161, 531–542. doi:10.1078/0176-1617-01084
  • Parveen, I., Threadgill, M.D., Moorby, J.M., & Winters, A. (2010). Oxidative phenols in forage crops containing polyphenol oxidase enzymes. Journal of Agricultural and Food Chemistry, 58, 1371–1382. doi:10.1021/jf9024294
  • Pattanagul, W., & Thitisaksakul, M. (2008). Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian Journal of Experimental Biology, 46, 736–742.
  • Porra, R.J., Schafer, W., Cmiel, E., Katheder, I., & Scheer, H. (1994). The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. European Journal of Biochemistry / FEBS, 219, 671–679. doi:10.1111/ejb.1994.219.issue-1-2
  • Prado, F.E., Boero, C., Gallardo, M., & Gonzalez, J.A. (2000). Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. Bot Bull Acad Sin, 41, 27–34.
  • Qiu, Z., Guo, J., Zhu, A., Zhang, L., & Zhang, M. (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 104, 202–208. doi:10.1016/j.ecoenv.2014.03.014
  • Sairam, R.K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86, 407–421.
  • Sembdner, G., & Parthier, B. (1993). Biochemistry, physiological and molecular actions of jasmonates. Annual Review of Plant Physiology, 54, 328–332.
  • Seo, H.S., Kim, S.K., Jang, S.W., Choo, Y.S., Sohn, E.Y., & Lee, I.J. (2005). Effect of jasmonic acid on endogenous gibberellins and abscisic acid in rice under NaCl stress. Biol Plant, 49, 447–450. doi:10.1007/s10535-005-0026-5
  • Soomro, A., Soomro, K.B., Akhtar, J., Soomro, S., & Tagar, A.A. (2015). Impact of salinity on growth, yield and water use efficiency of momordica charantia L. under raised bed irrigation. International Journal of Biology and Biotechnology, 12, 485–491.
  • Staswick, P.E. (1994). Storage proteins of vegetative plant tissues. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 303–322. doi:10.1146/annurev.pp.45.060194.001511
  • Stepien, P., & Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology, 149, 1154–1165. doi:10.1104/pp.108.131649
  • Stone, S.L., & Gifford, D.J. (1997). Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early seedling early-seedling growth: I. storage protein reserves. International Journal of Plant Sciences, 158, 727–737. doi:10.1086/297484
  • Stoop, J.M.H., & Pharr, D.M. (1994). Growth substrate and nutrient salt environment alter mannitol-to-hexose partitioning in celery petioles. Journal of the American Society for Horticultural Science, 119, 237–242. doi:10.21273/JASHS.119.2.237
  • Takeuchi, K., Gyohda, A., Tominaga, M., Kawakatsu, M., Hatakeyama, A., Ishii, N., … Koshiba, T. (2011). RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant and Cell Physiology, 52, 1686–1696. doi:10.1093/pcp/pcr105
  • Triantaphylides, C., & Havaux, M. (2009). Singlet oxygen in plants: Production, detoxification and signaling. Trends in Plant Science, 14, 219–228. doi:10.1016/j.tplants.2009.01.008
  • Velitcukova, M., & Fedina, I. (1998). Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica, 35, 89–97. doi:10.1023/A:1006878016556
  • Walia, H., Wilson, C., Zeng, L., Ismail, A.M., Condamine, P., & Close, T.J. (2007). Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Molecular Biology, 63, 609. doi:10.1007/s11103-006-9112-0
  • Wang, X.D., Chao, O.Y., Fan, Z., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal Plant Science, 6, 700–708.
  • Wasternack, C. (2014). Action of jasmonates in plant stress responses and development — Applied aspects. Biotechnology Advances, 32, 31–39. doi:10.1016/j.biotechadv.2013.09.009
  • Wu, H.F., Liu, X.L., You, L.P., Zhang, L.B., Zhou, D., Feng, J.H., … Yu, J.B. (2012). Effects of salinity on metabolic profiles, gene expressions and antioxidant enzymes in halophyte Suaeda salsa. Journal of Plant Growth Regulation, 31, 332–341. doi:10.1007/s00344-011-9244-6
  • Xie, Z.X., Duan, L.S., Tian, X.L., Wang, B.M., Eneji, A.E., & Li, Z.H. (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 165, 375–384. doi:10.1016/j.jplph.2007.06.001
  • Yemm, E.W., Cocking, E.C., & Ricketts, R.E. (1955). The determination of amino acids with Ninhydrin. Analyst, 80, 209–213. doi:10.1039/an9558000209
  • Yoon, B.S., Jin, C.J., Un, P.S., & Cho, D.H. (2005). Change in photosynthesis, proline content, and osmotic potential of Corn seedling under high-saline condition. Korean Journal of Crop Science, 50, 28–31.
  • Yoon, J.Y., Hamayun, M., Lee, S.K., & Lee, I.J. (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12, 63–68. doi:10.1007/s12892-009-0060-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.