232
Views
4
CrossRef citations to date
0
Altmetric
Articles

Changes in root architecture and productivity of melon (Cucumis melo L. cv. Hispano Nunhems) promoted by Glomus iranicum var. tenuihypharum

, , , &
Pages 364-373 | Accepted 14 Oct 2019, Published online: 24 Oct 2019

References

  • Akiyama, K., Matsuzaki, K.I., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827. doi:10.1038/nature03608
  • Amijee, F., Stribley, D.P., & Lane, P.W. (1993). The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply. New Phytologist, 125, 581–586. doi:10.1111/j.1469-8137.1993.tb03906.x
  • Augé, R.M. (2000). Stomatal behavior of arbuscular mycorrhizal plants. In: Y. Kapulnik & D.D. Douds Jr (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 201–237). Dordrecht: Kluwer Academic Publisher, Springer.
  • Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–Fungus interactions in mycorrhizal symbiosis. Nature Communications, 1, 48. doi:10.1038/ncomms1046
  • Bouma, T.J., Yanai, R.D., Elkin, A.D., Hartmond, U., Flores-Alva, D.E., & Eissenstat, D.M. (2001). Estimating age-dependent costs and benefits of roots with contrasting life span: Comparing apples and oranges. New Phytologist, 150, 685–695. doi:10.1046/j.1469-8137.2001.00128.x
  • Bucher, M., Wegmüller, S., & Drissner, D. (2009). Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Current Opinion on Plant Biology, 12, 500–507. doi:10.1016/j.pbi.2009.06.001
  • Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P.,… & Guerrieri, E. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171, 1009–1023. doi:10.1104/pp.16.00307
  • Declerck, S., Plenchette, C., & Strullu, D.G. (1995). Mycorrhizal dependency of banana (Musa acuminata, AAA group) cultivar. Plant and Soil, 176, 183–187. doi:10.1007/BF00017688
  • Duponnois, R., Plenchette, C., & Ba, A.M. (2001). Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. European Journal of Soil Biology, 37, 181–186. doi:10.1016/S1164-5563(01)01077-9
  • Feng, G., Zhang, F., Li, X., Tian, C., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190. doi:10.1007/s00572-002-0170-0
  • Fernández, F., & Juárez, J. (2012). Procedimiento de obtención de un agente micorrizógeno. Patente Europea. No: ES20110030566 20110411.
  • Fernández, F., Vicente-Sanchez, J., Maestre-Valero, J.F., Bernabé, A.J., Nicolás, E., Pedrero, F., & Alarcón, J.J. (2014). Physiological and growth responses of young tomato seedlings to drip-irrigation containing two low doses of the arbuscular mycorrhizal fungus Glomus iranicum var. tenuihypharum sp. nova. Journal of Horticultural Science and Biotechnology, 89, 679–685. doi:10.1080/14620316.2014.11513137
  • Fusconi, A., Lingua, G., Trotta, A., & Berta, G. (2005). Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza, 15, 313–321. doi:10.1007/s00572-004-0338-x
  • Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., & Khodaei-Joghan, A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106–114. doi:10.1016/j.agwat.2012.11.007
  • Giovanetti, M., & Mosse, B. (1980). An evolution of techniques to measure vesicular-arbuscular infection in roots. New Phytologist, 84, 489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
  • Gómez-Bellot, M.J., Ortuño, M.F., Nortes, P.A., Vicente-Sánchez, J., Martín, F.F., Bañón, S., & Sánchez-Blanco, M.J. (2015). Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza, 25, 399–409. doi:10.1007/s00572-014-0621-4
  • Graham, J.H., Duncan, L.W., & Eissenstat, D.M. (1997). Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytologist, 135, 335–343. doi:10.1046/j.1469-8137.1997.00636.x
  • Gregory, P.J. (2006). Roots, rhizosphere and soil: The route to a better understanding of soil science? European Journal of Soil Science, 57, 2–12. doi:10.1111/j.1365-2389.2005.00778.x
  • Harrill, R. (1998). Using a refractometer to test the quality of fruits and vegetables. Pineknoll Publishing Éd. Keedysville, EEUU.
  • Harris, J. (2009). Soil microbial communities and restoration ecology: Facilitators or followers? Science, 325, 573–574. doi:10.1126/science.1172975
  • Herrera, R.A., Hamel, C., Fernández, F., Ferrer, R.L., & Furazola, E. (2011). Soil-strain compatibility: The key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza, 21, 183–193. doi:10.1007/s00572-010-0322-6
  • Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153–187. doi:10.1007/s11104-009-9929-9
  • Hooker, J.E., Munro, M., & Atkinson, D. (1992). Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant and Soil, 145, 207–214. doi:10.1007/BF00010349
  • Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., & Li, J. (2011). Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant and Soil, 339, 391–399. doi:10.1007/s11104-010-0591-z
  • Jakobsen, I., Chen, B., Munkvold, L., Lundsgaard, T., & Zhu, Y.G. (2005). Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant, Cell and Environment, 28, 928–938. doi:10.1111/j.1365-3040.2005.01345.x
  • Kaya, C., Higgs, D., Kirnak, H., & Tas, I. (2003). Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thumb.) grown under well-watered and water-stressed conditions. Plant and Soil, 253, 287–292. doi:10.1111/j.1365-3040.2005.01345.x
  • Lehto, T., & Zwiazek, J.J. (2011). Ectomycorrhizas and water relations of trees: A review. Mycorrhiza, 21, 71–90. doi:10.1007/s00572-010-0348-9
  • Liu, C.Y., Huang, Y.M., Zou, Y.N., & Wu, Q.S. (2014a). Regulation of root lengthand lateral root number in trifoliate orange applied by peroxide hydrogen and arbuscular mycorrhizal fungi. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 94–98. doi:10.15835/nbha4219442
  • Liu, C.Y., Srivastava, A.K., & Wu, Q.S. (2014b). Effect of auxin inhibitor and AMF inoculation on growth and root morphology of trifoliate orange (Poncirus trifoliata) seedlings. Indian Journal of Agricultural Science, 84, 1342–1346.
  • Lorch, H.J. Benckieser, G., and Ottow, J. C. G. (1995). Basic methods for counting microorganisms in soil and water. In: Alef, K., Nanniieri, P. (Eds.), Methods in Applied Soil Microbiology and Biochemistry, (pp. 146–161). New York: Academic Press..
  • Navarro-Fernández, C.M., Aroca, R., & Barea, J.M. (2011). Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Applied Soil Ecolology, 48, 31–37. doi:10.1016/j.apsoil.2011.02.005
  • Nicolás, E., Maestre-Valero, J.F., Alarcón, J.J., Pedrero, F., Vicente-Sánchez, J., Bernabé, A., & Fernández, F. (2015). Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. Journal Agricultural Science, 153, 1084–1096. doi:10.1017/S002185961400080X
  • Nzanza, B., Marais, D., & Soundy, P. (2012). Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. International Journal of Agriculture and Biology, 14, 965–969.
  • Oláh, B., Brière, C., Bécard, G., Dénarié, J., & Gough, C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal, 44, 195–207. doi:10.1111/j.1365-313X.2005.02522.x
  • Orfanoudakis, M., Wheeler, C.T., & Hooker, J.E. (2010). Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza, 20, 117–126. doi:10.1007/s00572-009-0271-0
  • Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal Agricultural Research, 8, 116–122. doi:10.5424/sjar/201008S1-1230
  • Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Research, 125, 35–48. doi:10.1016/j.fcr.2011.08.005
  • Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin control of root development. CSH. Perspectives in Biology, 2, a001537.
  • Paszkowski, U., & Boller, T. (2002). The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta, 214, 584–590. doi:10.1007/s004250100642
  • Peret, B., De Rybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., … Bennett, M.J. (2009). Arabidopsis lateral root development: An emerging story. Trends in Plant Science, 14, 399–408. doi:10.1016/j.tplants.2009.05.002
  • Pérez, A., Sierra, J.R., & Montes, V.D. (2011). Hongos formadores de micorrizas arbusculares: Una alternativa biológica para la sostenibilidad de los agroecosistemas de praderas en el Caribe Colombiano. Revista Colombiana De Ciencia Animal, 3, 366–385. doi:10.24188/recia.v3.n2.2011.412
  • Phillips, D.M., & Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society, 55, 158–161. doi:10.1016/S0007-1536(70)80110-3
  • Rajan, S.K., Reddy, B.J.D., & Bagyaraj, D.J. (2000). Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. Forest Ecology and Management, 126, 91–95. doi:10.1016/S0378-1127(99)00089-4
  • Rillig, M.C., & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53. doi:10.1111/j.1469-8137.2006.01750.x
  • Salgado, E., & Cautin, R. (2008). Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation. Agricultural Water Management, 95, 817–824. doi:10.1016/j.agwat.2008.02.005
  • Siqueira, J., & Saggin-Júnior, O. (2001). Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 11, 245–255. doi:10.1007/s005720100129
  • Smith, F.A., & Smith, S.E. (1996). Mutualism and parasitism: Diversity, function and structure in the “arbuscular” VA mycorrhiza symbiosis. Advances in Botanical Research, 22, 1–43. doi:10.1007/s005720100129
  • Smith, S.E., & Read, D.J. (2008). Colonization of roots and anatomy of arbuscular mycorrhiza. In: Smith S.E.,Read D.J. (Eds.), Mycorrhizal symbiosis. (pp. 42–90). London: Academic Press.
  • Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., & Kalluri, U.C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant–Microorganism interactions. Plant Cell and Environment, 36, 909–919. doi:10.1111/pce.12036
  • Vicente-Sánchez, J., Nicolás, E., Pedrero, F., Alarcón, J.J., Maestre-Valero, J.F., & Fernández, F. (2014). Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza, 24, 339–348. doi:10.1007/s00572-013-0542-7
  • Vierheilig, H., & Piche, Y. (2002). Signalling in arbuscular mycorrhiza: Facts and hypotheses. Advances in Experimental Medicine and Biology, 505, 23–40. doi:10.1007/978-1-4757-5235-9_3
  • Wang, S., Srivastava, A.K., Wu, Q.S., & Fokom, R. (2014). The effect of mycorrhizal inoculation on the rhizosphere properties of trifoliate orange (Poncirus trifoliata L. Raf.). Scientia Horticulturae. – Amsterdam, 170, 137–142. doi:10.1016/j.scienta.2014.03.003
  • Wu, Q.S., Zou, Y.N., & He, X.H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32, 297–304. doi:10.1007/s11738-009-0407-z
  • Yano, K., Yamauchi, A., & Kono, Y. (1996). Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus. Mycorrhiza, 6, 409–415. doi:10.1007/s005720050140
  • Yao, Q., Wang, L.R., Zhu, H.H., & Chen, J.Z. (2009). Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae. – Amsterdam, 121, 458–461. doi:10.1016/j.scienta.2009.03.013
  • Zangaro, W., Nishidate, F.R., Vandresen, J., Andrade, G., & Nogueira, M.A. (2007). Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. Journal of Tropical Ecology, 23, 53–62. doi:10.1017/S0266467406003713
  • Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist, 210, 1022–1032. doi:10.1111/nph.13838

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.