140
Views
1
CrossRef citations to date
0
Altmetric
Articles

Evolutionary characteristics and expression patterns of miR156 gene family in Korla fragrant pear (Pyrus sinkiangensis Yu)

, , , , &
Pages 303-315 | Accepted 14 Oct 2019, Published online: 25 Oct 2019

References

  • Arnaud, T., Djami, T., Neeti, S.M., Khayalethu, N., & Ian, A.D. (2017). Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection. Frontiers in Plant Science, 8, 378.
  • Axtell, M.J., & Bowman, J.L. (2008). Evolution of plant micro RNAs and their targets. Trends in Plant Science, 13, 343–349. doi:10.1016/j.tplants.2008.03.009
  • Baker, C.C., Sieber, P., Wellmer, F., & Meyerowitz, E.M. (2005). The early extra petals1 mustant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology, 15, 303–315. doi:10.1016/j.cub.2005.02.017
  • Bjorn, U., Schluter, U., Molhoj, M., Gipmans, M., Verma, R., Kossmann, J., … Pauly, M. (2004). Identification and characterization of a UDP‐d‐glucuronate 4‐epimerase in Arabidopsis. FEBS Letters, 569, 327–331. doi:10.1016/j.febslet.2004.06.005
  • Burr, C.A., Leslie, M.E., Orlowski, S.K., Chen, I., Wright, C.E., Daniels, M.J., & Liljegren, S.J. (2011). CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiology, 156, 1837–1850. doi:10.1104/pp.111.175224
  • Cao, D., Li, Y., Wang, J.L., Nan, H., Wang, Y.N., Lu, S.J., … Kong, F.J. (2015). Gmmi R156b overexpression delays flowering time in soybean. Plant Molecular Biology, 89, 353–363. doi:10.1007/s11103-015-0371-5
  • Carlsbecker, A., Lee, J.Y., Roberts, C.J., Derrmer, J., Lehesranta, S., Zhou, J., … Thitamadee, S. (2010). Cell signalling by microRNA165/6 directs gene does dependent root cell fate. Nature, 465, 316–321. doi:10.1038/nature08977
  • Chen, X.F., Hao, L., Pan, J.W., Zheng, X.X., Jiang, G.H., Jin, Y., … Ma, B.J. (2012). SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Molecular Breeding, 30, 939–949. doi:10.1007/s11032-011-9677-4
  • Chuck, G., Cigan, A.M., Saeteurn, K., & Hake, S. (2007). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem micro RNA. Nature Genetics, 39, 544–549. doi:10.1038/ng2001
  • Cui, L.G., Shan, J.X., Shi, M., Gao, J.P., & Lin, H.X. (2014). The miRl56-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal, 80, 1108–1117. doi:10.1111/tpj.12712
  • Dai, L.L., Gao, J.X., Zou, C.G., Ma, Y.C., & Zhang, K.Q. (2015). mir-233 modulates the unfolded protein response in C. elegans during pseudomonas aeruginosa infection. PLoS Pathogens, 11, e1004606. doi:10.1371/journal.ppat.1004606
  • Dong, F.Y., Zhang, F., Wang, Y.T., & Niu, J.X. (2013). (2013). 库尔勒香梨警片脱落与宿存相关基因的差异表达分析 [Differential expression analysis of calyx falling off Korla fragrant pears and their persistent related genes]. Xinjiang Agricultural Sciences, 50, 57–64.
  • Ellis, J., Dodds, P., & Pryor, T. (2000). Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology, 3, 278–284. doi:10.1016/S1369-5266(00)00080-7
  • Fu, C.X., Sunkar, R., Zhou, C.E., Shen, H., Zhang, J.Y., Matts, J., … Wang, Z.Y. (2012). Overexpression of miRl56 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 10, 443–452. doi:10.1111/j.1467-7652.2011.00677.x
  • Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., & Wang, J.W. (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miRl56-targeted SPL transcription factor. The Plant Cell, 23, 1512–1522. doi:10.1105/tpc.111.084525
  • Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S.B., … Li, J. (2012). Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genetics, 8, e1002452. doi:10.1371/journal.pgen.1002452
  • He, J., Xu, M.L., Willmann, M.R., McCormick, K., Hu, T.Q., Yang, L., … Poethig, R.S. (2018). Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics, 14, e1007337. doi:10.1371/journal.pgen.1007337
  • Jia, X.L., Chen, Y.K., Xu, X.Z., Shen, F., Zheng, Q.B., Du, Z., … Zhang, X.Z. (2017). miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Scientific Reports, 7, 14223. doi:10.1038/s41598-017-14671-8
  • Jiang, D., Yin, C., Yu, A., Zhou, X., Liang, W., Yuan, Z., & Zhang, D. (2017). Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Research, 16, 507–518. doi:10.1038/sj.cr.7310062
  • Jin, B., Zhou, X.R., Jiang, B.L., Gu, Z.M., Zhang, P.H., Qian, Q., … Ma, B.J. (2015). Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance. Europe PubMed Central, 8, 18.
  • Jinn, T.L., Stone, J.M., & Walker, J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development, 14, 108–117.
  • Jung, J.H., Seo, P.J., Kang, S.K., & Park, C.M. (2011). miR156 signals are incorporated into the mi R156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology, 76, 35–45. doi:10.1007/s11103-011-9759-z
  • Leslie, M.E., Lewis, M.W., Youn, J.Y., Daniels, M.J., & Liljegren, S.J. (2010). The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis. Development, 137, 467–476. doi:10.1242/dev.041335
  • Lewis, M.W., Leslie, M.E., Fulcher, E.H., Darnielle, L., Healy, P.N., Youn, J.Y., & Liljegrent, S.J. (2010). The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. The Plant Journal, 62, 817–828. doi:10.1111/tpj.2010.62.issue-5
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. doi:10.1006/meth.2001.1262
  • Long, J.M., Liu, C.Y., Feng, M.Q., Liu, Y., Wu, X.M., & Guo, W.W. (2018). miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Journal of Experimental Botany, 69, 2979–2993. doi:10.1093/jxb/ery132
  • Luo, J.L., Zhao, N., & Lu, C.M. (2012). 植物Trihelix转录因子家族研究进展 [Plant Trihelix transcription factors family]. Hereditas, 34, 1551–1560. doi:10.3724/SP.J.1005.2012.01551
  • Ma, H.C., Wang, Y.L., Wen, X., Qi, M., & Li, J. (2011). 不同药剂处理对库尔勒香梨脱萼和宿萼果萼筒显微结构的影响 [Effects of different regent treatments on the microstructure of calyx tube with or without calyx of Korlafragrant pear]. Journal of Fruit Science, 28, 518–520.
  • Millar, A.A., & Gubler, F. (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA regulated genes that redundantly facilitate anther development. The Plant Cell, 17, 705–721. doi:10.1105/tpc.104.027920
  • Na, H.Y., Deng, Z.H., Zhang, M.Q., & Chen, R.K. (2008). 植物丝氨酸/精氨酸丰富(SR)蛋白的结构和功能及其在植物发育中的作用 [Structure and function of plant seirne/arginine-rich (SR)proteins and roles in plant development]. Plant Physiology Communications, 44, 1209–1215.
  • Niu, J.X., & He, Z.S. (2009). 梨果萼脱落宿存过程中果萼幼果内源激素的变化动态 [Dynamic changes of phytohormone content in pear calyx and young fruit during calyx growth and development]. Journal of Fruit Science, 26, 431–434.
  • Niu, Y., Chen, K.L., & Wang, J.Z. (2007). Molecular and functional characterization of sphingosine-1-phosphate lyase homolog from higher plants. Plant Biology, 49, 323–335.
  • Pei, M.S., Niu, J.X., Li, C.J., Cao, F.J., & Quan, S.W. (2016). Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear. BMC Genomics, 17, 132. doi:10.1186/s12864-016-2470-3
  • Qi, X.X. (2014). Investigation of genes expression of calyx survival and shedding of pear by digital gene expression and functional analysis of PsIDA and Psjointless (Doctoral dissertation). Nanjing Agricultural University, China.
  • Qi, X.X., Wu, J., Wang, L.F., Li, L.T., Cao, Y.F., Tian, L.M., … Zhang, S.L. (2013). Identifying the candidate genes involved inthe calyx abscission process of ‘Kuerlexiangli’(Pyrus sinkiangensis Yu) by digital transcriptabundance measurements. BMC Genomics, 14, 727. doi:10.1186/1471-2164-14-727
  • Qian, M.J., Ni, J.B., Niu, Q.F., Bai, S.L., Bao, L., Li, J.Z., … Teng, Y.W. (2017). Response of miR156-SPL module during the red peel coloration of bagging-treated Chinese sand pear (Pyrus pyrifolia Nakai). Frontiers in Physiology, 8, 550. doi:10.3389/fphys.2017.00550
  • Reiss, U., Oskouian, B., Zhou, J.H., Gupta, V., Sooriyakumaran, P., Kelly, S., … Saba, J.D. (2003). Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. The Journal of Biological Chemistry, 279, 1281–1290. doi:10.1074/jbc.M309646200
  • Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., & Huijser, P. (2008). The micro RNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology, 67, 183–195. doi:10.1007/s11103-008-9310-z
  • Sharma, N., Panchal, S., & Sanan-mishra, N. (2015). Protocol for artificial microRNA mediated over-expression of miR820 in indica rice. American Journal of Plant Sciences, 6, 1951–1961. doi:10.4236/ajps.2015.612196
  • Shikata, M., Yamaguchi, H., Sasaki, K., & Ohtsubo, N. (2012). Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. Planta, 236, 1027–1035. doi:10.1007/s00425-012-1649-3
  • Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., & Baurle, I. (2014). Arabidopsis miRl56 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26, 1792–1807. doi:10.1105/tpc.114.123851
  • Sun, G., Stewart, C.N., Xiao, P., & Zhang, B. (2012). MicroRNA expression analysis in the cellulosic biofuel crop Switchgrass (Panicum virgatum) under abiotic stress. PloS One, 7, e32017. doi:10.1371/journal.pone.0032017
  • Sun, X., Fan, G., Su, L., Wang, W., Liang, Z., Li, S., & Xin, H. (2015). Identification of cold-inducible microRNAs in grapevine. Frontiers in Plant Science, 6, 595. doi:10.3389/fpls.2015.00595
  • Ueda, T., Seo, S., Ohashi, Y., & Hashimoto, J. (2000). Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Molecular Biology, 44, 649–657. doi:10.1023/A:1026546004942
  • Varkonyi-Gasicet, E., Gould, N., Sandanayaka, M., Sutherland, P., & MacDiarmid, R.M. (2010). Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biology, 10, 159. doi:10.1186/1471-2229-10-159
  • Wang, B., Chen, Y., Guo, B., Kabir, M.R., Yao, Y., Peng, H., … Ni, Z. (2014). Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea may L.). Molecular Genetics and Genomics, 289, 501–512. doi:10.1007/s00438-014-0821-9
  • Wang, J.W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 138, 738–749. doi:10.1016/j.cell.2009.06.014
  • Wei, S., Gruber, M.Y., Yu, B., Gao, M.J., Khachatourians, G.G., Hegedus., D.D., … Hannoufa, A. (2012). Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biology, 12, 169. doi:10.1186/1471-2229-12-169
  • Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., & Poethig, R.S. (2009). The sequential action of miR156 and mi R172 regulates developmental timing in Arabidopsis. Cell, 138, 750–759. doi:10.1016/j.cell.2009.06.031
  • Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., … Zhang, M. (2012). OsTIR1 and OsAFB2 down regulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PloS One, 7, e30039. doi:10.1371/journal.pone.0030039
  • Xiao, Q.S. (2016). 荔枝末次梢叶片成熟度影响成花的机理研究 [The study of the effect of the leaves maturity in terminal shoot on flowering in Litchi (Litchi chinensis Sonn.)] (Master’s thesis). South China Agricultural University, China.
  • Xie, K., Wu, C., & Xiong, L. (2006). Genomic organization,differential expression,and interaction of SQUAMOSA promoter-binding-like transcription factors and micro RNA156in rice. Plant Physiology, 142, 280–293. doi:10.1104/pp.106.084475
  • Xing, S.P., Salinas, M., Garcia-Molina, A., Hohmann, S., Bemdtgen, R., & Huijser, P. (2013). SPL8 and miRl 56一targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant Journal, 75, 566–577. doi:10.1111/tpj.12221
  • Xu, C.X., & He, C.Z. (2007). The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance. Molecular Genetics and Genomics, 278, 85–94. doi:10.1007/s00438-007-0232-2
  • Yang, T., Xue, L., & An, L. (2017). Functional diversity of mi RNA in plants. Plant Science : an International Journal of Experimental Plant Biology, 172, 423–432. doi:10.1016/j.plantsci.2006.10.009
  • Zhang, Y., Schwarz, S., Saedler, H., & Huijser, P. (2007). SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Molecular Biology, 63, 429–439. doi:10.1007/s11103-006-9099-6
  • Zhou, L., Li, C.J., Niu, J.X., Pei, M.S., Cao, F.J., & Quan, S.W. (2018). Identification of miRNAs involved in calyx persistence inKorla fragrant pear (Pyrus sinkiangensis Yu) by high-throughput sequencing. Scientia Horticulturae, 240, 344–353. doi:10.1016/j.scienta.2018.06.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.