142
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Isolation and functional characterisation of the PHT1 gene encoding a high-affinity phosphate transporter in Camellia oleifera

, , , , , & show all
Pages 553-564 | Accepted 04 Dec 2019, Published online: 19 Dec 2019

References

  • Barber, S.A., Walker, J.M., & Vasey, E.H. (1963). Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. Journal of Agricultural and Food Chemistry, 11, 204–207. doi:10.1021/jf60127a017
  • Bieleski, R.L. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology, 24, 225–252. doi:10.1146/annurev.pp.24.060173.001301
  • Bieleski, R.L., & Ferguson, I.B. (1983). Physiology and metabolism of phosphate and its compounds. In: A. Läuchli & R.L. Bieleski (Eds.), Inorganic plant nutrition. Encyclopedia of plant physiology (new series) (pp. 422–449). Berlin, Heidelberg: Springer.
  • Bun-Ya, M., Nishimura, M., Harashima, S., & Oshima, Y. (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Molecular and Cellular Biology, 11, 3229–3238. doi:10.1128/MCB.11.6.3229
  • Daram, P., Brunner, S., Persson, B.L., Amrhein, N., & Bucher, M. (1998). Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 206, 225–233. doi:10.1007/s004250050394
  • Davies, T.G.E., Ying, J., Xu, Q., Li, Z.S., Li, J., & Gordon-Weeks, R. (2010). Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant, Cell & Environment, 25, 1325–1339. doi:10.1046/j.1365-3040.2002.00913.x
  • Epstein, E. (1972). Mineral nutrition of plants: Principles and perspectives. Bulletin of the Torrey Botanical Club, 99, 102–103. doi:10.2307/2484208
  • Fu, H., Doelling, J.H., Arendt, C.S., Hochstrasser, M., & Vierstra, R.D. (1998). Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics, 149, 677.
  • Gu, M., Chen, A., Sun, S., & Xu, G. (2016). Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: What is missing? Molecular Plant, 9, 396–416. doi:10.1016/j.molp.2015.12.012
  • Herrera-Estrella, L., & López-Arredondo, D. (2016). Phosphorus: The underrated element for feeding the world. Trends in Plant Science, 21, 461–463. doi:10.1016/j.tplants.2016.04.010
  • Hirsch, J., Marin, E., Floriani, M., Chiarenza, S., Richaud, P., Nussaume, L., & Thibaud, M.C. (2006). Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie, 88, 1767–1771. doi:10.1016/j.biochi.2006.05.007
  • Holford, I.C.R. (1997). Soil phosphorus: Its measurement, and its uptake by plants. Soil Research, 35, 227–240. doi:10.1071/S96047
  • Julie, M., Raghothama, K.G., Ajay, J., Juliette, J., Block, M.A., Richard, B., … Norbert, R. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934–11939. doi:10.1073/pnas.0505266102
  • Kai, M., Takazumi, K., Adachi, H., Wasaki, J., Shinano, T., & Osaki, M. (2002). Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Science, 163, 837–846. doi:10.1016/S0168-9452(02)00233-9
  • Karandashov, V., & Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10, 22–29. doi:10.1016/j.tplants.2004.12.003
  • Karthikeyan, A.S., Varadarajan, D.K., Mukatira, U.T., Matilde Paino, D.U., Barbara, D., & Raghothama, K.G. (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiology, 130, 221–233. doi:10.1104/pp.020007
  • Koh, E.J., Lee, S.J., Hong, S.W., Lee, H.S., & Lee, H. (2008). The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in ARABIDOPSIS. Molecules & Cells, 26, 236–242.
  • Leggewie, G., Willmitzer, L., & Riesmeier, J.W. (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. The Plant Cell, 9, 381–392. doi:10.1105/tpc.9.3.381
  • Lin, Z. (2016). Functional analysis of a root specific phosphate transporter, GmPT4, in soybean. Guangzhou: South China Agricultural University.
  • Liu, C.M., Muchhal, U.S., Uthappa, M., Kononowicz, A.K., & Raghothama, K.G. (1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology, 116, 91–99. doi:10.1104/pp.116.1.91
  • Liu, H., Trieu, A.T., Blaylock, L.A., & Harrison, M.J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11, 14–22. doi:10.1094/MPMI.1998.11.1.14
  • Liu, J., Uhde-Stone, C., Li, A., Vance, C., & Allan, D. (2001). A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant and Soil, 237, 257–266. doi:10.1023/A:1013396825577
  • López-Arredondo, D.L., Leyva-González, M.A., González-Morales, S.I., López-Bucio, J., & Herrera-Estrella, L. (2014). Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95–123. doi:10.1146/annurev-arplant-050213-035949
  • López-Bucio, J., De La Vega, O.M., Guevara-García, A., & Herrera-Estrella, L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 18, 450–453. doi:10.1038/74531
  • Marschner, H. (2012). Mineral nutrition of higher plants (2nd ed.). Amsterdam: Elsevier/Academic Press.
  • Ming, F., Mi, G.H., Lu, Q., Yin, S., Zhang, S.S., Guo, B., & Shen, D.L. (2005). Cloning and characterization of cDNA for the Oryza sativa phosphate transporter. Cellular & Molecular Biology Letters, 10, 401–411.
  • Misson, J., Thibaud, M.C., Bechtold, N., Raghothama, K., & Nussaume, L. (2004). Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology, 55, 727–741.
  • Morcuende, R., Bari, R.Y., Zheng, W., Pant, B.D., Blasing, O., Usadel, B., … Scheible, W.R. (2010). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment, 30, 85–112. doi:10.1111/j.1365-3040.2006.01608.x
  • Muchhal, U.S., Pardo, J.M., & Raghothama, K.G. (1996). Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 93, 10519–10523. doi:10.1073/pnas.93.19.10519
  • Mudge, S.R., Rae, A.L., Diatloff, E., & Smith, F.W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 31, 341–353. doi:10.1046/j.1365-313X.2002.01356.x
  • Mullins, E.D., Chen, X., Romaine, P., Raina, R., Geiser, D.M., & Kang,, S. (2001). Agrobacterium-mediated transformation of fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91, 173–180. doi:10.1094/PHYTO.2001.91.2.173
  • Nagarajan, V.K., Jain, A., Poling, M.D., Lewis, A.J., Raghothama, K.G., & Smith, A.P. (2011). Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology, 156, 1149–1163. doi:10.1104/pp.111.174805
  • Nagy, R., Karandashov, V., Chague, V., Kalinkevich, K., Tamasloukht, M., Xu, G.H., … Bucher, M. (2005). The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in Solanaceous species. The Plant Journal, 42, 236–250. doi:10.1111/tpj.2005.42.issue-2
  • Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., … Thibaud, M.C. (2011). Phosphate import in plants: Focus on the PHT1 transporters. Frontiers in Plant Science, 2, 83. doi:10.3389/fpls.2011.00083
  • Pao, S.S., Paulsen, I.T., & Saier, M.H., Jr. (1998). Major facilitator superfamily. Microbiology and Molecular Biology Reviews, 62, 1–34.
  • Paszkowski, U., Kroken, S., Roux, C., & Briggs, S.P. (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99, 13324–13329. doi:10.1073/pnas.202474599
  • Peng, Z., Tan, D.G., Sun, X.P., & Zhang, J.M. (2009). Fungus salt resistance gene into Arabidopsis by pollen-tube pathway. Genomics & Applied Biology, 28, 465–470.
  • Rae, A.L., Cybinski, D.H., Jarmey, J.M., & Smith, F.W. (2003). Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology, 53, 27–36. doi:10.1023/B:PLAN.0000009259.75314.15
  • Raghothama, K.G. (2000). Phosphate transport and signaling. Current Opinion in Plant Biology, 3, 182–187. doi:10.1016/S1369-5266(00)00062-5
  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., … Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462–470. doi:10.1038/35106601
  • Shin, H., Shin, H.S., Dewbre, G.R., & Harrison, M.J. (2010). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal, 39, 629–642. doi:10.1111/tpj.2004.39.issue-4
  • Smith, F.W., Ealing, P.M., Dong, B., & Delhaize, E. (2010). The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal, 11, 83–92. doi:10.1046/j.1365-313X.1997.11010083.x
  • Sun, T., Li, M., Shao, Y., Yu, L., & Ma, F. (2017). Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple. Frontiers in Plant Science, 8, 426. doi:10.3389/fpls.2017.00426
  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology & Evolution, 24, 1596. doi:10.1093/molbev/msm092
  • Thibaud, M.-C., Arrighi, J.-F., Bayle, V., Chiarenza, S., Creff, A., Bustos, R., … Nussaume, L. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal, 64, 775–789. doi:10.1111/tpj.2010.64.issue-5
  • Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., & Périlleux, C. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biology, 3, 2. doi:10.1186/1471-2229-3-2
  • Verónica, L.P., Elena, O., Pierre-Emmanuel, C., Frédéric, L., Annegret, K., Loic, D., … Marcel, B. (2011). Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology, 156, 2141–2154. doi:10.1104/pp.111.180646
  • Wang, X., Wang, Y., Tian, J., Lim, B.L., Yan, X., & Liao, H. (2009). Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 151, 233–240. doi:10.1104/pp.109.138891
  • Wu, P., Shou, H., Xu, G., & Lian, X. (2013). Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Current Opinion in Plant Biology, 16, 205–212. doi:10.1016/j.pbi.2013.03.002
  • Wu, Z., Zhao, J., Gao, R., Hu, G., Gai, J., Xu, G., & Xing, H. (2011). Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max. PloS One, 6, e19752. doi:10.1371/journal.pone.0019752
  • Xianan, X., Wu, H., Fengchuan, L., Nianwu, T., Yi, L., Hui, L., & Bin, Z. (2013). Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. New Phytologist, 198, 836–852. doi:10.1111/nph.12188
  • Xu, G.H., Chague, V., Melamed-Bessudo, C., Kapulnik, Y., Jain, A., Raghothama, K.G., … Silber, A. (2007). Functional characterization of LePT4: A phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany, 58, 2491–2501. doi:10.1093/jxb/erm096
  • Yang, G., Ding, G., Shi, L., Cai, H., & Xu, F. (2012). Characterization of phosphorus starvation-induced gene BnSPX3 in Brassica napus. Plant and Soil, 350, 339–351. doi:10.1007/s11104-011-0913-9
  • Ye, Y., Yuan, J., Chang, X., Yang, M., Zhang, L., Lu, K., & Lian, X. (2015). The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice. PloS One, 10, e0126186. doi:10.1371/journal.pone.0126186
  • Yuan, J., Huang, L., Zhou, N., Wang, H., & Niu, G. (2017). Fractionation of inorganic phosphorus and aluminum in red acidic soil and the growth of Camellia oleifera. HortScience, 52, 1293–1297. doi:10.21273/HORTSCI12189-17
  • Zeng, Y., Tan, X., Zhang, L., Long, H., Wang, B., Li, Z., & Yuan, Z. (2015). A fructose-1,6-biphosphate aldolase gene from Camellia oleifera: Molecular characterization and impact on salt stress tolerance. Molecular Breeding, 35, 17. doi:10.1007/s11032-015-0233-5
  • Zhang, L. (2011). Molecular characterization and corresponding biological functions of phosphate transporter genes in wheat (Triticum aestivum L.). Baoding: Hebei Agricultural University.
  • Zhuang, R.L. (2008). Comprehensive utilization of tea-oil fruits, tea-oil tree (Camellia oleifera Abel.) of China (pp. 339–346). Beijing, China: Chinese Forestry Publish House.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.