267
Views
0
CrossRef citations to date
0
Altmetric
Articles

Regulatory mechanisms underlying florigenesis in Vanilla planifolia Andrews: A study of MADS-box gene family

, , & ORCID Icon
Pages 428-443 | Accepted 30 Nov 2020, Published online: 29 Dec 2020

References

  • Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Yanofsky, M.F. (2000b). MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. The Plant Journal: For Cell and Molecular Biology, 24, 457–466. doi:10.1046/j.1365-313x.2000.00891.x
  • Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Yanofsky, M.F. (2000a). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America, 97, 5328–5333. doi:10.1073/pnas.97.10.5328
  • Angenent, G.C., & Colombo, L. (1996). Molecular control of ovule development. Trends in Plant Science, 1, 228–232. doi:10.1016/S1360-1385(96)86900-0
  • Arora, R., Agarwal, P., Ray, S., Singh, A., Singh, V., Tyagi, A.K., Kapoor, S. (2007). MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 8, 242. doi:10.1186/1471-2164-8-242
  • Becker, A., & Theißen, G. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29, 464–489. doi:10.1016/S1055-7903(03)00207-0
  • Boss, P.K., Sensi, E., Hua, C., Davies, C., Thomas, M.R. (2002). Cloning and characterization characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Science, 162, 887–895. doi:10.1016/S0168-9452(02)00034-1
  • Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.-C., Liu, K.-W., Chen, L.J., He, Y., Xu, Q., Bian, C., Zheng, Z., Sun, F., Liu, W., Hsiao, Y.Y., Pan, Z.J., Hsu, C.C., Yang, Y.P., Hsu, Y.C., Chuang, Y.C., Dievart, A., Dufayard, J.F., Xu, X., Wang, J.Y., Wang, J., Xiao, X.J., Zhao, X.M., Du, R., Zhang, G.Q., Wang, M., Su, Y.Y., Xie, G.C., Liu, G.H., Li, L.Q., Huang, L.Q., Luo, Y.B., Chen, H.H., Van de Peer, Y., Liu, Z.-J. (2015). The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 47(1), 65–72. doi:10.1038/ng.3149
  • Chang, Y.Y., Chiu, Y.F., Wu, J.W., Yang, C.-H. (2009). Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant & Cell Physiology, 50, 1425–1438. doi:10.1093/pcp/pcp087
  • Chen, Y.Y., Lee, P.F., Hsiao, Y.Y., Wu, W.-L., Pan, Z.-J., Lee, Y.-I., Tsai, W.-C. (2012). C- and D-class MADS-Box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant & Cell Physiology, 53, 1053–1067. doi:10.1093/pcp/pcs048
  • Coen, E.S., & Meyerowitz, E.M. (1991). The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31–37. doi:10.1038/353031a0
  • De Bodt, S., Raes, J., Van de Peer, Y., Theißen, G. (2003). And then there were many: MADS goes genomic. Trends in Plant Science, 8, 475–483. doi:10.1016/j.tplants.2003.09.006
  • de Folter, S., Immink, R.G.H., Kieffer, M., Pařenicová, L., Henz, S.R., Weigel, D., Angenent, G.C. (2005). Comprehensive interaction map of the arabidopsis MADS box transcription factors. The Plant Cell, 17, 1424–1433. doi:10.1105/tpc.105.031831
  • Diaz-Riquelme, J., Lijavetzky, D., Martinez-Zapater, J.M., Carmona, M.J. (2009). Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology, 149, 354–369. doi:10.1104/pp.108.131052
  • Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. doi:10.1093/nar/gkh340
  • Ferrandiz, C., Liljegren, S.J., & Yanofsky, M.F. (2000). Negative regulation of the SHATTERPROOF genes by FRUITFULL during arabidopsis fruit development. Science, 289, 436–438. doi:10.1126/science.289.5478.436
  • Gan, Y., Filleur, S., Rahman, A., Gotensparre, S., Forde, B.G. (2005). Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta, 222, 730–742. doi:10.1007/s00425-005-0020-3
  • Ghai, D., Alok, A., Himani, H., Upadhyay, S.K., Sembi, J.K. (2020). Genome wide characterization of the SERK/SERL gene family in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica (Orchidaceae). Computational Biology and Chemistry, 85, 107210. doi:10.1016/j.compbiolchem.2020.107210
  • Gramzow, L., & Theissen, G. (2010). A hitchhiker’s guide to the MADS world of plants. Genome Biology, 11, 214. doi:10.1186/gb-2010-11-6-214
  • Gu, Q., Ferrandiz, C., Yanofsky, M.F., Martienssen R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during arabidopsis fruit development. Development, 125, 1509–1517.
  • Guruprasad, K., Reddy, B.V., & Pandit, M.W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. “Protein Engineering, Design and Selection”, 4, 155–161. doi:10.1093/protein/4.2.155
  • Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., Huijser, P. (2000). Molecular cloning of SVP: A negative regulator of the floral transition in arabidopsis. The Plant Journal: For Cell and Molecular Biology, 21, 351–360. doi:10.1046/j.1365-313x.2000.00682.x
  • Hemming, M.N., & Trevaskis, B. (2011). Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Science, 180, 447–453. doi:10.1016/j.plantsci.2010.12.001
  • Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Münster, T., Theißen, G. (2002). Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 19, 801–814. doi:10.1093/oxfordjournals.molbev.a004137
  • Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., Coupland, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal, 21, 4327–4337. doi:10.1093/emboj/cdf432
  • Himani, H., Ramkumar, T.R., Tyagi, S., Sharma, H., Upadhyay, S.K., Sembi, J.K. (2019). Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae). Journal of Plant Biotechnology, 46, 255–273. doi:10.5010/JPB.2019.46.4.255
  • Hong, Y.X., Xing, G.L., Quan, Z.L., Bai, S., Lu, W., Zhang, X. (2004). Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Molecular Biology, 55, 209–220. doi:10.1007/s11103-004-0181-7
  • Hu, L., & Liu, S. (2012). Genome-wide analysis of the MADS-box gene family in cucumber. Genome, 55, 245–256. doi:10.1139/g2012-009
  • Immink, R.G., Tonaco, I.A., de Folter, S., Shchennikova, A., van Dijk, A.D., Busscher-Lange, J., Angenent, G.C. (2009). SEPALLATA3: The “glue” for MADS box transcription factor complex formation. Genome Biology, 10, R24. doi:10.1186/gb-2009-10-2-r24
  • Irish, V.F., & Litt, A. (2005). Flower development and evolution: Gene duplication, diversification and redeployment. Current Opinion in Genetics & Development, 15, 454–460. doi:10.1016/j.gde.2005.06.001
  • Kramer, E.M., Dorit, R.L., & Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149, 765–783.
  • Kramer, E.M., Jaramillo, M.A., & Di Stilio, V.S. (2004). Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166, 1011–1023. doi:10.1534/genetics.166.2.1011
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. doi:10.1093/molbev/msy096
  • Kyte, J., & Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132. doi:10.1016/0022-2836(82)90515-0
  • Lee, J., & Lee, I. (2010). Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 61, 2247–2254. doi:10.1093/jxb/erq098
  • Lin, C.S., Hsu, C.T., Liao, D.C., Chang, W.-J., Chou, M.-L., Huang, Y.-T., Shih, M.-C. (2016). Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycinapusilla. Plant Biotechnology, 14, 284–298. doi:10.1111/pbi.12383
  • Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.-H., Yu, H. (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in arabidopsis. Development, 135, 1481–1491. doi:10.1242/dev.020255
  • Lopez Dee, Z.P., Wittich, P., Pe, M.E., Rigola, D., Del Buono, I., Gorla, M.S., Colombo, L. (1999). OsMADS13, a novel rice MADS box gene expressed during ovule development. Developmental Genetics, 25, 237–244. doi:10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L
  • Masiero, S., Colombo, L., Grini, P.E., Schnittger, A., Kater, M.M. (2011). The emerging importance of type I MADS box transcription factors for plant reproduction. The Plant Cell, 23, 865–872. doi:10.1105/tpc.110.081737
  • Meyerowitz, E., Bowman, J., & Brockman, L. (1991). A genetic and molecular model for flower development in Arabidopsis thaliana. Development, 113, 157–167.
  • Michaels, S.D., & Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell, 11, 949–956. doi:10.1105/tpc.11.5.949
  • Munster, T., Deleu, W., Wingen, L.U., Ouzunova, M., Cacharrón, J., Faigl, W., Werth, S., Kim, J. T., Saedler, H. and Theißen, G. (2002). Maize MADS-box genes galore. Maydica, 47, 287–301.
  • Nam, J., Kim, J., Lee, S., An, G., Ma, H., Nei, M. (2004). Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 101, 1910–1915. doi:10.1073/pnas.0308430100
  • Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M., Lepiniec, L. (2002). The TRANSPARENT TESTA16 locus encodes the Arabidopsis B sister MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell, 14, 2463–2479. doi:10.1105/tpc.004127
  • Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Colombo, L. (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in arabidopsis: New openings to the MADS world. The Plant Cell, 15, 1538–1551. doi:10.1105/tpc.011544
  • Paterson, A.H., Bowers, J.E., & Chapman, B.A. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America, 101, 9903–9908. doi:10.1073/pnas.0307901101
  • Ramkumar, T.R., Kanchan, M., Upadhyay, S.K., Sembi, J.K. (2018). Identification and characterization of WUSCHEL-related homeobox (WOX) gene family in economically important orchid species Phalaenopsis equestris and Dendrobium catenatum. Plant Gene, 14, 37–45. doi:10.1016/j.plgene.2018.04.004
  • Riechmann, J.L., Krizek, B.A., & Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America, 93, 4793–4798. doi:10.1073/pnas.93.10.4793
  • Riechmann, J.L., & Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biological Chemistry, 378, 1079–1101.
  • Rounsley, S.D., Ditta, G.S., & Yanofsky, M.F. (1995). Diverse roles for MADS-box genes in arabidopsis development. The Plant Cell, 7, 1259–1269.
  • Rouse, D.T., Sheldon, C.C., Bagnall, D.J., Peacock, W.J., Dennis, E.S. (2002). FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant Journal: For Cell and Molecular Biology, 29, 183–191. doi:10.1046/j.0960-7412.2001.01210.x
  • Seymour, G.B., Ryder, C.D., Cevik, V., Hammond, J.P., Popovich, A., King G.J., Vrebalov, J., Giovannoni, J.J., Manning, K. (2011). A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassaDuch.) fruit, a non-climacteric tissue. Journal of Experimental Botany, 62, 1179–1188. doi:10.1093/jxb/erq360
  • Sharma, A., Shumayla, Tyagi, S., Alok, A., Singh, K., Upadhyay, S.K. (2020). Thaumatin-like protein kinases: Molecular characterization and transcriptional profiling in five cereal crops. Plant Science, 290, 110317.
  • Sheng, X.G., Zhao, Z.Q., Wang, J.S., Yu, H.-F., Shen, Y.-S., Zeng, X.-Y., Gu, -H.-H. (2019). Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biology, 19, 106. doi:10.1186/s12870-019-1717-y
  • Shimeld, S.M. (1999). Gene function, gene networks and the fate of duplicated genes. Seminars in Cell & Developmental Biology, 10, 549–553. doi:10.1006/scdb.1999.0336
  • Shore, P., & Sharrocks, A.D. (1995). The MADS-box family of transcription factors. European Journal of Biochemistry, 229, 1–13. doi:10.1111/j.1432-1033.1995.tb20430.x
  • Shu, Y., Yu, D., Wang, D., Guo, D., Guo, C. (2013). Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Molecular Biology Reports, 40, 3901–3911. doi:10.1007/s11033-012-2438-6
  • Tapia-Lopez, R., Garcia-Ponce, B., Dubrovsky, J.G., Garay-Arroyo, A., Pérez-Ruíz, R.V., Kim, S.-H., Alvarez-Buylla, E.R. (2008). An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in arabidopsis. Plant Physiology, 146, 1182–1192. doi:10.1104/pp.107.108647
  • Theissen, G. (2001). Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology, 4, 75–85. doi:10.1016/S1369-5266(00)00139-4
  • Theissen, G., & Saedler, H. (2001). Plant biology: Floral quartets. Nature, 409, 469–7. doi:10.1038/35054172
  • Tian, Y., Dong, Q., Ji, Z., Chi, F., Cong, P., Zhou, Z. (2015). Genome-wide identification and analysis of the MADS-box gene family in apple. Gene, 555, 277–290. doi:10.1016/j.gene.2014.11.018
  • Van De Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411–424. doi:10.1038/nrg.2017.26
  • Vandenbussche, M., Theissen, G., Van de Peer, Y. (2003). Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research, 31, 4401–4409. doi:10.1093/nar/gkg642
  • Wang, S.Y., Lee, P.F., Lee, Y.I., Hsiao, -Y.-Y., Chen, -Y.-Y., Pan, Z.-J., Tsai, W.-C. (2011). Duplicated C-class MADS-Box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant & Cell Physiology, 52, 563–577. doi:10.1093/pcp/pcr015
  • Wang, X., Shi, X., Hao, B., Ge, S., Luo, J. (2005). Duplication and DNA segmental loss in the rice genome: Implications for diploidization. New Phytologist, 165, 937–946. doi:10.1111/j.1469-8137.2004.01293.x
  • Wang, Y., Zhang, J., Hu, Z., Guo, X., Tian, S., Chen, G. (2019). Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. International Journal of Molecular Sciences, 20, 2961. doi:10.3390/ijms20122961
  • Wei, B., Zhang, R.Z., Guo, J.J., Liu, D.M., Fan, R.C., Mao, L., Zhang, X.Q. (2014). Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One, 9, e84781.
  • Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, E., Ecker, J.R. (2007). Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genetics, 3, e123. doi:10.1371/journal.pgen.0030123
  • Wells, C.E., Vendramin, E., Tarodo, S.J, Verde, I., Bielenberg, D.G. (2015). A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 15, 41. doi:10.1186/s12870-015-0436-2
  • Xu, Y., Teo, L.L., Zhou, J., Kumar, P.P., Yu, H. (2006). Floral organ identity genes in the orchid Dendrobium crumenatum. The Plant Journal: For Cell and Molecular Biology, 46, 54–68. doi:10.1111/j.1365-313X.2006.02669.x
  • Yan, L., Wang, X., Liu, H., Tian, Y., Lian, J., Yang, R., Sheng, J.(2015). The genome of Dendrobium officinale illuminates the biology of the important traditional chinese orchid herb. Molecular Plant, 8, 922–934. doi:10.1016/j.molp.2014.12.011
  • Yu, H., Xu, Y., Tan, E.L., Kumar, P.P. (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America, 99, 16336–16341. doi:10.1073/pnas.212624599
  • Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Bennetzen, J. (2005). The genomes of Oryza sativa: A history of duplications. PLoS Biology, 3, e38. doi:10.1371/journal.pbio.0030038
  • Yuan, S., Xu B., Jing, Z., Zheni, X., Qiang, C., Zhimin, Y.; Qingsheng, C., Bingru, H. (2015). Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass. BMC Genomics, 16, 1–16.
  • Yun, P.Y., Kim, S.Y., Ochiai, T., Fukuda, T., Ito, T., Kanno, A., Kameya, T. (2004). AVAG2 is a putative D-class gene from an ornamental asparagus. Sexual Plant Reproduction, 17, 107–116. doi:10.1007/s00497-004-0223-y
  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., dePamphilis, C.W., Ma, H. (2005). The evolution of the SEPALLATA subfamily of MADS-box genes: A pre angiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 2209–2223. doi:10.1534/genetics.104.037770
  • Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Wang, J.Y., Lin, Y.C., Xu, Q., Chen, L.J., Yoshida, K., Fujiwara, S., Wang, Z.W., Zhang, Y.Q., Mitsuda, N., Wang, M., Liu, G.H., Pecoraro, L., Huan, H.X., Xiao, X.J., Lin, M, Wu, X.Y., Wu, W.L., Chen, Y.Y., Chang, S.B., Sakamoto, S., Ohme-Takagi, M., Yagi, M., Zeng, S.J., Shen, C.Y., Yeh, C.M., Luo, Y.B., Tsai, W.C., Van De Peer, Y.,Liu, Z.J. (2017). The Apostasia genome and the evolution of orchids. Nature, 549, 379–383. doi:10.1038/nature23897
  • Zhang, G.-Q., Xu, Q., Bian, C., Tsai, W.C., Yeh, C.M., Liu, K.W., Yoshida, K., Zhang, L.S., Chang, S.B., Chen, F., Shi, Y., Su, Y.Y., Zhang, Y.Q., Chen, L.J., Yin, Y., Lin, M., Huang, H., Deng, H., Wang, Z.W., Zhu, S.L., Zhao, X., Deng, C., Niu, S.C., Huang, J., Wang, M., Liu, G.H., Yang, H.J., Xiao, X.J., Hsiao, Y.Y., Wu, W.L., Chen, Y.Y., Mitsuda, N., Ohme-Takagi, M., Luo, Y.B., Van de Peer, Y., Liu, Z.J. (2016). The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports, 6, 19029.
  • Zhang, H., & Forde, B.G. (2000). Regulation of arabidopsis root development by nitrate availability. Journal of Experimental Botany, 51, 51–59. doi:10.1093/jxb/51.342.51
  • Zhao, T., Ni, Z., Dai, Y., Yao, Y., Nie, X., Sun, Q. (2006). Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 276, 334–350. doi:10.1007/s00438-006-0147-3
  • Zobell, O., Faigl, W., Saedler, H., Munster, T. (2010). MIKC* MADS-box proteins: Conserved regulators of the gametophytic generation of land plants. Molecular Biology and Evolution, 27, 1201–1211. doi:10.1093/molbev/msq005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.