124
Views
0
CrossRef citations to date
0
Altmetric
Articles

Changes of health-promoting bioactive compounds and related enzymes of ‘Hutai No.8’ grape (Vitis vinifera L.) in response to deficit irrigation

, , , &
Pages 494-507 | Accepted 02 Nov 2020, Published online: 14 Jan 2021

References

  • Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97, 956–964. doi:10.1016/j.agwat.2010.01.025
  • Adel, D., Al-Qurashiand, & Awad, A.M. (2016) Quality, antioxidant capacity, antioxidant compounds and enzyme activities of ‘el-bayadi’ table grapes as affected by postharvest uv-c radiation. Philippine Agricultural Scientist. 99, 34–41.
  • Bais, A.J., Murphy, P.J., & Dry, I.B. (2000). The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Functional Plant Biology, 27, 425–433. doi:10.1071/PP00007
  • Bavaresco, L., Vezzulli, S., Civardi, S., Gatti, M., Battilani, P., & Pietri, A. (2008). Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and epsilon-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius. Journal of Agricultural and Food Chemistry, 56, 2085–2089.
  • Bruna, R., Böger, A.S., Daniel, F., & Valezi, E.D.M. (2018). Optimization of ultrasound‐assisted extraction of grape‐seed oil to enhance process yield and minimize free radical formation. Journal of the Science of Food and Agriculture, 98, 5019–5026. doi:10.1002/jsfa.9036
  • Castellarin, S.D., Matthews, M.A., Di, G.G., & Gambetta, G.A. (2007a). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101–112. doi:10.1007/s00425-007-0598-8
  • Castellarin, S.D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., & Di, G.G. (2007b). Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell & Environment, 30, 1381–1399. doi:10.1111/j.1365-3040.2007.01716.x
  • Chen, J.Y., Wen, P.F., Kong, W.F., Pan, Q.H., Wan, S.B., & Huang, W.D. (2006). Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. Journal of Plant Physiology, 163, 115–127. doi:10.1016/j.jplph.2005.07.006
  • Chung, I.M., Park, M.R., Chun, J.C., & Yun, S.J. (2003). Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science, 164, 103–109. doi:10.1016/S0168-9452(02)00341-2
  • Conesa, M.R., Falagán, N., Rosa, J.M.D.L., Aguayob, E., Domingoa, R., & Pastora, A.P. (2016). Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘crimson seedless’ table grapes. Agricultural Water Management, 163, 9–18. doi:10.1016/j.agwat.2015.08.026
  • Csuk, R., Albert, S., & Siewert, B. (2013). Synthesis and radical scavenging activities of resveratrol analogs. Archiv der Pharmazie, 346, 504–510. doi:10.1002/ardp.201300081
  • Daniel, F.H., Tomoyuki, K., Tsuyoshi, K., & Miguel, P.G. (2010). Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars: Dynamics during fruit development. Hortscience, 45, 1150–1154. doi:10.21273/HORTSCI.45.8.1150
  • Deineka, V.I., Makarevich, S.L., & Deineka, L.A. (2018). Hydrophilic interaction chromatography on silica: Group analysis of grape anthocyanins. Journal of Analytical Chemistry, 73, 190–194. doi:10.1134/S106193481802003X
  • Deluc, L.G., Decendit, A., Papastamoulis, Y., Rillon, J.M., Cushman, C.J., & Cramer, R.G. (2011). Water deficit increases stilbene metabolism in cabernet sauvignon berries. Journal of Agricultural and Food Chemistry, 59, 289–297. doi:10.1021/jf1024888
  • Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, D.M., Schlauc, A.K., … Cramer, G.R. (2009). Water deficit alters deferentially metabolic pathways affecting important flavor and quality traits in grape berries of cabernet sauvignon and chardonnay. BMC Genomics, 10, 212. doi:10.1186/1471-2164-10-212
  • Faci, J.M., Blanco, O., Medina, E.T., & Martínez-cob, A. (2014). Effect of post veraison regulated deficit irrigation in production and berry quality of autumn royal and crimson table grape cultivars. Agricultural Water Management, 134, 73–83. doi:10.1016/j.agwat.2013.11.009
  • FAO. Faostat. (2020). Available at http://faostat.fao.org/
  • Gao, J.F. (2006). Experimental guidance for plant physiology, Higer Education Press, Beijing, in Chinese.
  • Han, Q.M. (2008). Study on the determination of β-phenylalanine with colorimetric method. Journal Anhui Agricultural Science, 35, 0517–6611.
  • Hasan, M., & Bae, H. (2017). An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22, 294. doi:10.3390/molecules22020294
  • Hossain, M.A., Rana, M.M., Kimura, Y., & Roslan, H. (2014). Changes in biochemical characteristics and activities of ripening associated enzymes in mango fruit during the storage at different temperatures. BioMed Research International, 2014, 1–11.
  • Hrazdina, G., Parsons, G.F., & Mattick, L.R. (1984). Physiological and biochemical events during development and maturation of grape berries. American Journal of Enology and Viticulture, 35, 220–227.
  • Intrigliolo, D.S., Lizama, V., García-Esparza, M.J., Abrisqueta, I., & Álvarez, I. (2015). Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agricultural Water Management, 170, 110–119. doi:10.1016/j.agwat.2015.10.020
  • Intrigliolo, D.S., Pérez, D., Risco, D., Yeves, A., & Castel, J.R. (2012). Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30, 339–349. doi:10.1007/s00271-012-0354-0
  • Iora, S.R.F., Maciel, G.M., Zielinski, A., Silva, M.V.D., Pontes, P.V.D.A., Haminiuk, C.W.I., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science and Technology, 50, 62–69. doi:10.1111/ijfs.12583
  • Jagannathan, V., & Viswanathan, P. (2018). Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection? Journal of Basic Microbiology, 58, 1800131. doi:10.1002/jobm.201800131
  • Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., & Beecher, C.W. (1997). Cancer chemopreventive activity of resveratrol a natural product derived from grapes. Science, 275, 218–220. doi:10.1126/science.275.5297.218
  • Jeandet, P., Besssis, R., & Gautheron, B. (1991). The production of resveratrol (3,5,4ʹ-trihydroxystilbene) by grape berries in different developmental stages. American Journal of Enology and Viticulture, 42, 41–46.
  • Jeandet, P., Hébrard, C., Deville, M.A., Cordelier, S., Dorey, S., AZIZ, A., & Crouzet, J. (2014). Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules, 19, 18033–18056. doi:10.3390/molecules191118033
  • Jiménez, J.B., Orea, M.J., González Urea, A., Escribano, P., Osa, P.L.D.L., & Guadarrama, A. (2007). Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. European Food Research and Technology, 224(3):373–378.
  • Kennedy, J.A., Saucier, C., & Glories, Y. (2006). Grape and wine phenols: History and perspective. American Journal of Enology and Viticulture, 57, 239–248.
  • Knobloch, K.H., & Hahlbrock, K. (1975). Isoenzyme of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. FEBS Journal, 52, 311–320.
  • Lacampagne, S., Gagné, S., & Gény, L. (2010). Involvement of Abscisic Acid in Controlling the Proanthocyanidin Biosynthesis Pathway in Grape Skin: New Elements Regarding the Regulation of Tannin Composition and leuco anthocyanidin Reductase (LAR) and Anthocyanidin Reductase (ANR) Activities and Expression. Journal of Plant Growth Regulation, 29(1): 81–90.
  • Lamb, C.J., & Rubery, P.H. (1975). A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity. Analytical Biochemistry, 68, 554–561. doi:10.1016/0003-2697(75)90651-X
  • Langcake, P. (1981). Disease resistance of Vitis spp. and the production of the stress metabolites reveratrol,ε-Viniferin, a-Viniferin and pterostilbene. Physiological Plant Pathology, 18, 213–226. doi:10.1016/S0048-4059(81)80043-4
  • Langcake, P., & Pryce, R.J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9, 77–86. doi:10.1016/0048-4059(76)90077-1
  • Larronde, F. (2003). Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants: Research note. American Journal of Enology and Viticulture, 54, 63–66.
  • Lastra, D.E.L.A.C.A., & Villegas, I. (2005). Resveratrol as an anti-flammatory and antiaging agent: Mechanism and clinical implications. Molecular Nutrition & Food Research, 49, 405–430. doi:10.1002/mnfr.200500022
  • Liu, C.Y., Wang, L.J., Wang, J.F., Wu, B.H., Liu, W., Fan, P.G., … Li, S. (2013). Resveratrols in Vitis berry skins and leaves: Their extraction and analysis by HPLC. Food Chemistry, 136, 643–649. doi:10.1016/j.foodchem.2012.08.017
  • Liu, H.X., Jiang, W.B., Bi, Y., & Luo, Y.B. (2005). Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biology and Technology, 35, 263–269.
  • Lopes, C.M., Santos, T.P., Monteiroa, A., Rodrigues, M.L., Costa, J.M., & Chaves, M.M. (2011). Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Scientia Horticulturae, 129, 603–612. doi:10.1016/j.scienta.2011.04.033
  • Matthews, M.A., & Anderson, M.M. (1988). Fruit Ripening in Vitis vi nifera L.: Responses to seasonal water deficits. American Journal of Enology and Viticulture, 39, 313–320.
  • Mazza, G.J. (2007). Anthocyanins and heart health. Annali Dellistituto Superiore Di Sanità, 43, 369–374.
  • Negri, A.S., Prinsi, B., Rossoni, M., Failla, O., Scienza, A., Cocucci, M., & Espen, L. (2008). Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening. BMC Genomics, 9, 378. doi:10.1186/1471-2164-9-378
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and post veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53, 261–267.
  • Ollé, D., Guiraud, J.L., Souquet, J.M., Terrier, N., Ageorges, A., Cheynier, V., & Verries, C. (2011). Effect of pre- and post-veraison water deficit on proanthocyanidins and anthocyanin accumulation during Shiraz berry development. Australian Journal of Grape and Wine Research, 17, 90–100. doi:10.1111/j.1755-0238.2010.00121.x
  • Orak, H.H. (2007). Total antioxidant activities, plienolics, anthocyanins, polyphenoloxidase activities of selected red drape cultivars and their correlations. Scientia Horticulturae, 111, 235–241. doi:10.1016/j.scienta.2006.10.019
  • Roby, G., Harbertson, J.F., Adams, D.A., & Matthews, M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100–107. doi:10.1111/j.1755-0238.2004.tb00012.x
  • Roby, G., & Matthews, M.A. (2004). Relative proportions of seed, skin and flesh, in ripe berries from Cabernet sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Australian Journal of Grape and Wine Research, 10, 74–82. doi:10.1111/j.1755-0238.2004.tb00009.x
  • Ruan, B.F., Lu, X.Q., Song, J., & Zhu, H.L. (2012). Derivatives of resveratrol: Potential agents in prevention and treatment of cardiovascular disease. Current Medicinal Chemistry, 19, 4175–4183. doi:10.2174/092986712802430054
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology And Viticulture, 16(3): 144–158.
  • Soleas, G.J., Diamandis, E.P., & Goldberg, D.M. (1997). Resveratrol: A molecule whose time has come? And gone? Clinical Biochemistry, 30, 91–113. doi:10.1016/S0009-9120(96)00155-5
  • Tang, S.H., & Luo, C. (2012). Plant physiology experiment tutorial (pp. 126–127). Chongqing, China: Southwest china normal university press.
  • Tassoni, A., Fornale, S., Franceschetti, M., Musiani, F., Michael, A.J., Perry, B., & Bagni, N. (2005). Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytologist, 166, 895–905. doi:10.1111/j.1469-8137.2005.01383.x
  • Villangó, S.Z., Szekeres, A., Bencsik, O., Láposia, R., Pálfia, Z., & Zsófia, Z.S. (2016). The effect of post veraison water deficit on the phenolic composition and concentration of the Kékfrankos (Vitis vinifera, L.) berry. Scientia Horticulturae, 209, 113–116. doi:10.1016/j.scienta.2016.06.010
  • Wang, F., Kang, S., Du, T., Li, F.S., & Qiu, R.J. (2011). Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98(8), 1228–1238.
  • Wang, J.F., Ma, L., Xi, H.F., Wang, L.J., & Li, S.H. (2015). Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera × V. amurensis). Food Chemistry, 168, 430–438. doi:10.1016/j.foodchem.2014.07.025
  • Wang, L.J., Ma, L., Xi, H.F., Duan, W., Wang, J.F., & Li, S.H. (2013). Individual and combined effects of CaCl2 and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. Journal of Agricultural and Food Chemistry, 61, 7135–7141. doi:10.1021/jf401220m
  • Wang, W., Tang, K., Yang, H.R., Wen, P.F., Zhang, P., Wang, H.L., & Huang, W.D. (2010). Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology & Biochemistry, 48, 142–152. doi:10.1016/j.plaphy.2009.12.002
  • Xi, H., Ma, L., Wang, L., Li, S., & Wang, L. (2015). Differential response of the biosynthesis of resveratrols and flavonoids to UV- Cirradiation in grape leaves. New Zealand Journal of Crop and Horticultural Science, 43, 163–172. doi:10.1080/01140671.2014.989862
  • Xing, W.Y., Miao, X.L., & Wang, T. (2011). Advantages and countermeasures of the development of Hutai-8 Xi’an region. Modern Agricultural Science Technology, 1, 391–393. In Chinese.
  • Xu, A., Zhan, J.C., & Huang, W.D. (2015). Effects of ultraviolet C irradiation on stilbene biosynthesis in Vitis vinifera L. cv. Cabernet Sauvignon berry skins and calli. South African Journal of Enology & Viticulture, 36, 256–266.
  • Yadav, M., & Jain, S.A. (2009). Biological and medicinal properties of grapes and their bioactive constituents: An update. Journal of Medicinal Food, 12, 473–484. doi:10.1089/jmf.2008.0096
  • Yang Liu, S.F., & Yang, W. (2018). Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. Journal of Photochemistry and Photobiology. B, Biology, 179, 66–73. doi:10.1016/j.jphotobiol.2018.01.002
  • Zareei, E., Javadi, T., & Aryal, R. (2018). Biochemical composition and antioxidant activity affected by spraying potassium sulfate in black grape (Vitis vinifera L. cv.Rasha). Journal of the Ence of Food and Agriculture, 2018 doi:10.1002/jsfa.9107
  • Zarrouk, O., Francisco, R., Pinto-Marijuan, M., Brossa, R., & Santos, R.R. (2012). Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agricultural Water Management, 114, 18–29. doi:10.1016/j.agwat.2012.06.018
  • Zsófi, Z., Tóth, E., Rusjan, D., & Bálo, B. (2011). Terroir aspects of grape quality in a cool climate wine region: Relationship between water deficit, vegetative growth and berry sugar concentration. Scientia Horticulturae, 127, 494–499. doi:10.1016/j.scienta.2010.11.014
  • Zsófi, Z., Villangó, S., Pálfi, Z., Tóth, E., & Bálo, B. (2014). Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under post veraison water deficit. Scientia Horticulturae, 172, 176–182. doi:10.1016/j.scienta.2014.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.