614
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanotechnology: A cutting-edge technology in vegetable production

ORCID Icon, , , &
Pages 682-695 | Accepted 09 Mar 2021, Published online: 22 Apr 2021

References

  • Abd- Elsalam, K.A., & Alghuthaymi, M.A. (2015). Nanobiofungicides: Are they the next- generation of fungicides? Journal of Nanotechnology and Materials Science, 2, 1–3. doi:https://doi.org/10.15436/2377-1372.15.013
  • Abdel- Razik, A.B., Hammad, I.A., & Tawfik, E. (2017). Transformation of thionin genes using chitosan nanoparticle into potato plant to be resistant to fungal infection. Journal of Biotechnology and Biochemistry, 3, 1–13.
  • Abdellatif, K.F., Hamouda, R.A., & El-Ansary, M.S.M. (2016). Green nanoparticles engineering on root-knot nematode infecting eggplant and their effect on plant DNA modification. Iran Journal of Biotechnology, 14, 250–259. doi:https://doi.org/10.15171/ijb.1309
  • Abouelkassem, S. (2017). Towards using of new and safety nanomaterials against tomato leafminer, Tuta absoluta (Mayrick) in tomato under field conditions. Nanomedicine and Nanotechnology, 8, 13–14. doi:https://doi.org/10.4172/2157-7439-C1-061
  • Abyaneh, H., & Varkeshi, H. (2014). The effect of nanofertilizers on nitrate leaching and its distribution in soil profile with an emphasis on potato yield. Nano Science & Nano Technology, 8, 198–207.
  • Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L., & Patil, B.S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10, 1–16. doi:https://doi.org/10.1038/s41598-020-61696-7
  • Acharya, P., Jayaprakasha, G.K., Crosby, K.M., & Patil, B.S. (2017). Nanopriming: An effective technique to improve seed germination, growth and quality in onion (Allium cepa L.). American Society for Horticultural Science Conference: Poster Presentation. Vegetable and Fruit Improvement Center, Department of Horticultural Sciences Texas A&M University, College Station (United States).
  • Adisa, I.O., Pullagurala, V.L., Rawat, S., Viezcas, J.A.H., Dimkpa, C., Elmer, W.H., … Torresdey, J.L.G. (2018). Role of cerium compounds in fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 66, 5959–5970. doi:https://doi.org/10.1021/acs.jafc.8b01345
  • Afrayeem, S.M., & Chaurasia, A.K. (2017). Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.). Journal of Pharmacognosy and Phytochemistry, 6, 1564–1566.
  • Ahmed, A.I.S., Yadav, D.R., & Lee, Y.S. (2016). Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. International Journal of Innovative Research in Science, Engineering and Technology, 5, 7378–7385. doi:https://doi.org/10.15680/IJIRSET.2016.0505132
  • Aitken, R.J., Chaudhry, M.Q., Boxall, A.B.A., & Hull, M. (2006). Manufacture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine, 56, 300–306. doi:https://doi.org/10.1093/occmed/kq1051
  • Alabdallah, N.M., & Alzahrani, H.S. (2020). Impact of zinc oxide nanoparticles on growth of cowpea and okra plants under salt stress conditions. Biosciences Biotechnology Research Asia, 17, 329–340. doi:https://doi.org/10.13005/bbra/2836
  • Albanna, L.S., Salem, N.M., & Awwad, A.M. (2016). Seed germination and growth of cucumber (Cucumis sativus): Effect of nano-crystalline sulfur. Journal of Agricultural Science, 8, 219–225. doi:https://doi.org/10.5539/jas.v8n10p219
  • Al-Fahdawi, A.J.J., & Allawi, M.M. (2019). Impact of biofertilizers and nano potassium on growth and yield of eggplant (Solanum melongena L.). Plant Archives, 19, 1809–1815.
  • Alghuthaymi, M.A., Almoammar, H., Rai, M., Galiev, E.S., & Abd-Elsalam. (2015). Myconanoparticles synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 29, 221–236. doi:https://doi.org/10.1080/13102818.2015.1008194
  • Almutairi, Z.M. (2016). Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plants Omics Journal, 9, 106–114.
  • Almutairi, Z.M., & Alharbi, A. (2015). Effect of silver nanoparticles on seed germination of the crop plants. Journal of Advances in Agriculture, 4, 280–285. doi:https://doi.org/10.5281/zenodo.1108056
  • Alsaeedi, A.H., Elgarawany, M.M., El-Ramady, H., Alshaal, T., & Al-Otaibi, A.O.A. (2019). Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Environment and Arid Land Agriculture, 28, 57–68. https://www.researchgate.net/publication/330872927
  • Al-Tameemi, A.J.H., Al-Aloosy, Y.A.M., & Al-Saedi, N.J.J. (2019). Effect of spraying chelated and nano of both iron and zinc on the growth and yield of broccoli (Brassica oleracea var. italica). Plant Archives, 19, 1783–1790.
  • Amin, M.A., & Badawy, A.A. (2017). Metabolic changes in common bean plants in response to zinc nanoparticles and zinc sulfate. International Journal of Innovative Science, Engineering & Technology, 4, 321–335.
  • Anand, A., Kumari, A., Thakur, M., & Koul, A. (2019). Hydrogen peroxide signalling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports, 9, 8814. doi:https://doi.org/10.1038/s41598-019-45102-5
  • Anandaraj, K., & Natarajan, N. (2017). Effect of nanoparticles for seed quality enhancement in onion [Allium cepa (Linn) cv. CO (On)] 5. International Journal of Current Microbiology and Applied Sciences, 6, 3714–3724. doi:https://doi.org/10.20546/ijcmas.2017.611.435
  • Anonymous (2015). New biological nano-fertilizers presented in Iran. Iran Daily. Accessed 23 November, 2015. http://www.iran-daily.com/News/115999html
  • Astafurova, T.P., Burenina, A.A., & Suchkova, S.A. (2017). Influence of ZnO and platinum nanoparticles on cucumber yielding capacity and fruit quality. Nano Hybrids and Composites, 13, 142–148. doi:10.4028/http://www.scientific.net/NHC.13.142
  • Barik, T.K., Sahu, B., & Swain, V. (2008). Nanosilica-from medicine to pest control. Journal of Parasitology Research, 103, 253–258. doi:https://doi.org/10.1007/s00436-008-0975-7
  • Basith, M.A., Rao, K.P., & Ramteke, P.W. (2018). Phytotoxic effect of zinc oxide nanoparticles on seed germination in tomato (Lycopersicon esculentum L.). Plant Archives, 18, 1791–1794.
  • Bernard, G.C., Fitch, J., Min, B., Shahi, N., Egnin, M., Ritte, I., … Bonsi, C. (2019). Potential nematicidial activity of silver nanoparticles against the root-knot nematode (Meloidogyne incognita). Online Journal of Complementary & Alternative Medicine, 2, 1–5. doi:https://doi.org/10.33552/OJCAM.2019.02.000531
  • Bhattacharyya, A., Bhaumik, A., Rani, U.P., Mandal, S.S., & Epidi, T.T. (2010). Nano-particles-A recent approach to insect pest control. African Journal of Biotechnology, 9, 3489–3493. doi:https://doi.org/10.5897/AJB2010.000-3206
  • Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy, S.F., Lafranconi, M., Jay, W., & Gordon, S.C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73, 137–150. doi:https://doi.org/10.1016/j.yrtph.2015.06.001
  • Bradfield, S.J., Kumar, P., White, J.C., & Ebbs, S.D. (2017). Zinc, copper or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiology and Biochemistry, 110, 128–137. doi:https://doi.org/10.1016/j.plaphy.2016.04.008
  • Buzea, C., Pacheco, I.I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2, 17–71. doi:https://doi.org/10.1116/1.2815690
  • Chakravarthy, A.K., Chandrashekharaiah, K., Bhattacharya, S.B., Dhanabala, A., Gurunatha, K., & Ramesh, P. (2012). Bio efficacy of inorganic nanoparticles CdS, nano-Ag and nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica, 6, 271–281.
  • Chhipa, H. (2017). Nanopesticide: Current status and future possibilities. Agricultural Research and Technology, 5, 1–4. doi:https://doi.org/10.19080/ARTOAJ.2017.05.555651
  • Chitra, K., & Annadurai, G. (2013). Fluorescent silica nanoparticles in the detection and control of the growth of pathogen. Journal of Nanotechnology, 17, 1–8. doi:https://doi.org/10.1155/2013/509628
  • Cui, S., Ling, P., Zhu, H., & Keener, H.M. (2018). Plant pest detection using an artificial nose system: A review. Sensors, 18, 378. doi:https://doi.org/10.3390/s18020378
  • Das, B., Debnath, K., Sarkar, K.K., Priya, B., & Mukherjee, S. (2015). Effect of different nanoparticles on germination and seedling growth in tomato. Research on Crops, 16, 542–550. doi:https://doi.org/10.5958/2348-7542.2015.00077.7
  • Das, C.K., Srivastava, G., Dubey, A., Roy, M., Jain, S., Sethy, N.K., … Das, M. (2016). Nano-iron pyrite seed dressing: A sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnology for Environmental Engineering, 1, 2. doi:https://doi.org/10.1007/s41204-016-0002-7
  • Das, M., Saxena, N., & Dwivedi, P.D. (2009). Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology, 3, 10–18. doi:https://doi.org/10.1080/17435390802504237
  • Dogaroglu, Z.G., & Koleli, N. (2016). Effect of titanium dioxide and titanium dioxide-silver nanoparticles on seed germination of lettuce (Lactuca sativa). Journal of the Faculty of Engineering and Architecture, 31, 193–198.
  • Duran, N.M., Savassa, S.M., Lima, R.G., De-Almeida, E., Linhares, F.S., Gestel, C.A.M., & De-Carvahlo, H.W.P. (2017). X-ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. Journal of Agricultural and Food Chemistry, 65, 7874–7884. doi:https://doi.org/10.1021/acs.jafc.7b03014
  • Ekinci, M., Dursun, A., Yildirim, E., & Parlakova, F. (2014). Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Scientiarum Polonorum Hortorum Cultus, 13, 135–141.
  • El-Azeim, M.M.A., Sherif, M.A., Hussien, M.S., Tantawy, I.A.A., & Bashandy, S.O. (2020). Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecologica Sinica, 9, 1–16. doi:https://doi.org/10.1016/J.CHNAES.2019.12.007
  • El-Batal, A., Sidkey, N.M., & Ismail, A.A. (2016). Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. Journal of Chemistry and Pharmaceutical Research, 8, 934–951.
  • El-Deen, A.H.N., & El-Deeb, B.A. (2018). Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. Journal of Agricultural Science, 10, 148–156. doi:https://doi.org/10.5539/jas.v10n2p148
  • El-Dougdoug, N.K., Bondok, A.M., & El-Dougdoug, K.A. (2018). Evaluation of silver nanoparticles as antiviral agent against ToMV and PVY in tomato plants. Middle East Journal of Applied Sciences, 8, 100–111.
  • El-Hamd, A.S.A., & Abd-Elwahed, A.H.M. (2017). Improving the growth and yield of okra plants (Abelmoschus esculentus L.) using Lithovit fertilizer. Academia Journal of Scientific Research, 6, 65–71. doi:https://doi.org/10.15413/ajar.2017.IECCNA.13
  • El-Henawy, A., El-Sheikh, I., Hassan, A., Madein, A., El-Sheikh, A., El-Yamany, A., … Faizy, S.E.D. (2018). Response of cultivated broccoli and red cabbage crops to mineral, organic and nano-fertilizers. Environment, Biodiversity and Soil Security, 2, 221–231. doi:https://doi.org/10.21608/jenvbs.2019.6797.1046
  • El-Sawy, M.M., Elsharkawy, M.M., Abass, J.M., & Kasem, M.H. (2017). Antiviral activity of 2-nitromethyl phenol, zinc nanoparticles and seaweed extract against cucumber mosaic virus (CMV) in eggplant. Journal of Virology and Antiviral Research, 6, 1–6. doi:https://doi.org/10.4172/2324-8955.1000173
  • Elshamy, M.T., El-Khallal, S.M., Husseiny, S.M., & Farroh, K.Y. (2019). Application of nano-chitosan NPK fertilizer on growth and productivity of potato plant. Journal of Scientific Research, 36, 424–441. doi:https://doi.org/10.21608/jsrs.2019.58522
  • El-Waseif, A.A., Attia, M.S., & El-Ghwas, D.E. (2019). Potential effects of silver nanoparticles, synthesized from Streptomyces clavuligerus, for controlling of wilt disease caused by. Fusarium Oxysporum. Egyptian Pharmaceutical Journal, 18, 228–235. doi:https://doi.org/10.4103/epj.epj_8_19
  • Farouk, S. (2015). IMROVING GROWTH AND PRODUCTIVITY OF POTATO (Solanum tuberosum L.) BY SOME BIOSTIMULANTS AND LITHOVIT WITH OR WITHOUT BORON. Journal of Plant Production Mansoura University, 6, 2187–2206. doi:https://doi.org/10.21608/jpp.2015.52463
  • Feizi, H., Pour, S.J., & Rad, K.H. (2013). Biological response of muskmelon (Cucumis melo L.) to magnetic field and silver nanoparticles. Annual Research & Review in Biology, 3, 794–804.
  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20, 8856–8874. doi:https://doi.org/10.3390/molecules20058856
  • Garcia-gomez, C., Obrador, A., & Gonzalez, D. (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment, 589, 11–24. doi:https://doi.org/10.1016/j.scitotenv.2017.02.153
  • Gerdini, F.S. (2016). Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. International Journal of Farming and Allied Sciences, 5, 367–371.
  • Gogoi, R., Singh, P.K., Kumar, R., Nair, K.K., Alam, I., Srivastava, C., … Goswami, A. (2013). Suitability of nano-sulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus (L.) Moench) caused by Erysiphe cichoracearum. Journal of Plant Pathology and Microbiology, 4, 171. doi:https://doi.org/10.4172/2157-7471.1000171
  • Gupta, D., & Chauhan, P. (2016). Fungicidal activity of silver nanoparticles against Alternaria brassicicola. 2nd International conference on emerging technologies: micro to nano. pp 1724.  pp 1724. Jaipur, Rajasthan, India, Manipal University Jaipur, CSIR-CEERI Pilani, BITS Pilani. doi: https://doi.org/10.1063/1.4945151
  • Gutierrez, T.Q., Ortiz, H.O., Pliego, G.C., Fuentes, A.D.H., Rangel, A.S., Mendoza, A.B., … Maldonado, A.J. (2019). The application of selenium and copper nanoparticles modififies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences, 20. doi:https://doi.org/10.3390/ijms20081950
  • Haghighi, M., Afifipour, Z., & Mozafarian, M. (2012). The effect of nano silicon on tomato seed germination under salinity levels. Journal of Biological and Environmental Sciences, 6, 87–90.
  • Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). Chapter 5- nanopesticides: A review of current research and perspectives. Academic Press, 193–225. doi:https://doi.org/10.1016/B978-0-12-804299-1.00006-0
  • Hendel, A.M., Gawecki, R., Zubko, M., Stroz, D., & Kurczyńska, E. (2016). Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobotanica, 69, 1694. doi:https://doi.org/10.5586/aa.1694
  • Hu, J., Wu, X., Wu, F., Chen, W., Zhang, X., White, J., … Wang, X. (2020). TiO2 nanoparticle exposure on lettuce (Lactuca sativa L.): Dose-dependent deterioration of nutritional quality. Environmental Science Nano, 7, 501–513. doi:https://doi.org/10.1039/C9EN01215J
  • Huang, S., Wang, L., Liu, L., Hou, Y., & Li, L. (2015). Nanotechnology in agriculture, livestock and aquaculture in China. A Revirew. Agronomy for Sustainable Development, 35. doi:https://doi.org/10.1007/s13593-014-0274-x
  • Jaiswal, M., Dudhe, R., & Sharma, P.K. (2015). Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 5, 123–127. doi:https://doi.org/10.1007/s13205-014-0214-0
  • Jakubowska, M.K., Bulak, P., & Bieganowski, A. (2017). Influence of metal nanocolloids on selected abiotic stress factors in pumpkin. IX International Scientific Symposium “Farm machinery and processes management in sustainable agriculture”, Lublin, Poland pp 142–147. doi: https://doi.org/10.24326/fmpmsa.2017.26
  • Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., & Danquah, M.K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050–1074. doi:https://doi.org/10.3762/bjnano.9.98
  • Jeyasubramanian, K., Thoppey, G.U.U., & Hikku, G.S. (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 6, 15451–15459. doi:https://doi.org/10.1039/c5ra23425e
  • Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3, 1–6. doi:https://doi.org/10.3389/fchem.2015.00064
  • Kalia, A., & Kaur, H. (2019). Nanofertilizers: An innovation towards new generation fertilizers for improved nutrient use efficacy (NUE) and environmental sustainability. In: Singh B (ed) emerging trends in nanobiomedicine. Nanoagroceuticals & Nanophytochemicals, 1–17.
  • Kalikeri, S., Shiralgi, Y., Manchanahally, S.B., & Manjanna, J. (2015). Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience, 6, 1–9. doi:https://doi.org/10.1007/s13204-015-0510-y
  • Kalteh, M., Zarrin, T.A., Shahram, A., Maryam, M.A., & Alireza, F.N. (2014). Effect of silica nanoparticles on basil under salinity stress. Journal of Chemical Health Risks, 4, 49–55.
  • Karim, Z., Adnan, R., & Ansari, M.S. (2012). Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. PLOS One, 7, 1–8. doi:https://doi.org/10.1371/journal.pone.0041422
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931. doi:https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khanm, H., Vaishnavi, B.A., Namratha, M.R., & Shankar, A.G. (2017). Nano zinc oxide boosting growth and yield in tomato: The rise of “nano fertilizer era”. International Journal of Agricultural Science and Research, 7, 197–206. Paper Id.: IJASRJUN201724. doi:https://doi.org/10.24247/ijasrjun201724
  • Khater, M. (2015). Effect of titanium nanoparticles (TiO2) on growth, yield and chemical constituents of coriander plants. Arab Journal of Nuclear Sciences and Applications, 48, 187–194.
  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A.S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano Publications, 3, 3221–3227. doi:https://doi.org/10.1021/nn900887m
  • Kim, T.Y., Lee, S.H., Ku, H., & Lee, S.Y. (2019). Enhancement of drought tolerance in cucumber plants by natural nano carbon materials. Plants, 8, 446. doi:https://doi.org/10.3390/plants8110446
  • Koka, J.A., Wani, A.H., & Bhat, M.Y. (2019). Evaluation of antifungal activity of magnesium oxide (MgO) and iron oxide (FeO) nanoparticles on rot causing fungi. Journal of Drug Delivery and Therapeutics, 9, 173–178. doi:https://doi.org/10.22270/jddt.v9i2-s.2479
  • Kookana, R.S., Boxall, A.B.A., Reeves, P.T., Ashauer, R., Beulke, S., Chaudhry, Q., … De-Brink, P.J.V. (2014). Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62, 4227–4240. doi:https://doi.org/10.1021/jf500232f
  • Kumar, G.D., Natarajan, N., & Nakkeeran, S. (2016). Antifungal activity of nanofungicide trifloxystrobin 25% + tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10, 100–105. doi:https://doi.org/10.5897/AJMR2015.7692
  • Kumar, G.D., Raja, K., Natarajan, N., Govindaraju, K., & Subramanian, K.S. (2019). Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Materials, Chemistry and Physics, 242, 122492. doi:https://doi.org/10.1016/j.matchemphys.2019.122492
  • Kumari, S., & Khan, S. (2017). Synthesis and applications of nanofungicides: A next-generation fungicide. Fungal nanotechnology: Applications in agriculture, industry and medicine’ (pp. 103–118). R. Prasad (ed.), Fungal Nanotechnology, Fungal Biology. Springer International Publishing AG 2017. doi:https://doi.org/10.1007/978-3-319-68424-6_6
  • Lamsal, K., Kim, S.W., Jung, J.H., Kim, Y.S., Kim, K.S., & Lee, Y.S. (2011). Inhibition effects of silver nanoparticles against powdery mildew on cucumber and pumpkin. Mycobiology, 39, 26–32. doi:https://doi.org/10.4489/MYCO.2011.39.1.026
  • Laware, S.L., & Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology and Applied Sciences, 3, 874–881.
  • Li, Y., Yang, D., & Cui, J. (2017). Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against black speck of tomato. Royal Society of Chemistry Advances, 7, 38853–38860. doi:https://doi.org/10.1039/c7ra05520j
  • Liu, F., Wen, L.X., Li, Z.Z., & Yu, W. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41, 2268–2275. doi:https://doi.org/10.1016/j.materresbull.2006.04.014
  • Li-Yan, C., Qi, W., & Ru-Hong, M. (2009). Effect of nanoparticles on the bacterial community of the cucumber phyllosphere. Chinese Journal of Agricultural Biotechnology, 6, 141–145. doi:https://doi.org/10.1017/S1479236209990179
  • Lovestam, G., Rauscher, H., & Roebben, G. (2010). Considerations on a definition of nanomaterial for regulatory purposes. Joint Research Centre (JRC) Reference Reports, pp 800004.
  • Lu, L., Huang, M., Huang, Y., Corvini, X., Ji, P.F., & Zhao, L. (2020). Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science Nano, 4, 1–12. doi:https://doi.org/10.1039/d0en00214c
  • Ma, L., Zhang, M., Bhandari, B., & Ga, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, 64, 23–38. doi:https://doi.org/10.1016/j.tifs.2017.03.005
  • Mahdizadeh, V., Safaie, N., & Khelghatibana, F. (2015). Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. Journal of Crop Protection, 4, 291–300. http://jcp.modares.ac.ir/article-3-12407-en.html
  • Merghany, M.M., Shahein, M.M., Sliem, M.A., Abdelgawad, K.F., & Radwan, A.F. (2019). Effect of nano-fertilizers on cucumber plant growth, fruit yield and its quality. Plant Archives, 19, 165–172.
  • Mikkelsen, R. (2018). Nanofertilizer and nanotechnology: A quick look. Better Crops with Plant Food, 102, 18–19. doi:https://doi.org/10.24047/BC102318
  • Mishra, S.P., Padhiary, A.K., Nandi, A., & Pattnaik, A. (2019). Review on role of nano-micro nutrients in vegetable crops. International Journal of Current Microbiology and Applied Sciences, 8, 277–282. doi:https://doi.org/10.20546/ijcmas.2019.810.029
  • Morales-Espinoza, M.C., Cadenas-Pliego, G., Perez-Alvarez, M., Hernandez-Fuentes, A.D., Da La Fuente, M.C., Benavides-Mendoza, A., … Juarez-Maldonado, A. (2019). Se nanoparticles induce changes in the growth, antioxidant responses and fruit quality of tomato developed under NaCl stress. Molecules, 24, 3030. doi:https://doi.org/10.3390/molecules24173030
  • Nafady, N.A., Alamri, S.A.M., Hassan, E.A., Hashem, M., Mostafa, Y.S., & Abo-Elyousr, K.A.M. (2019). Application of zinc oxide nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life. Folia Horticulturae, 31, 319–329. doi:https://doi.org/10.2478/fhort-2019-0025
  • Nagwa, I., Elsaad, A., & Hameed, R.E.A. (2019). Copper ferrite nanoparticles as nutritive supplement for cucumber plants grown under hydroponic system. Journal of Plant Nutrition, 42, 1645–1659. doi:https://doi.org/10.1080/01904167.2019.1630428
  • Palmqvist, N.G.M., Seisenbaeva, G.A., Svedlindh, P., & Kessler, V.G. (2017). Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nano Express, 12, 631. doi:https://doi.org/10.1186/s11671-017-2404-2
  • Panwar, J., Jain, N., Bhargaya, A., Akhtar, M.S., & Yun, Y.S. (2012). Positive effect of zinc oxide nanoparticles on tomato plants: A step towards developing “Nano-fertilizers”. International Conference on Environmental Research and Technology (ICERT), pp 348–352. Penang, Malaysia: School of Industrial Technology, Universiti Sains Malaysia
  • Parizi, M.A., Moradpour, Y., & Negahdari, M. (2014). Assessing antifungal effects of magnesium oxide nanoparticles on oxysprorum f. sp. lycopersici, pathogenic agent of tomato. Electronic Journal of Biology, 10, 59–63.
  • Pawar, V.A., & Laware, S.L. (2018). Seed priming: A critical review. International Journal of Scientific Research in Biological Sciences, 5, 94–101. doi:https://doi.org/10.26438/ijsrbs/v5i5.94101
  • Perez-Labrada, F., Lopez-Vargas, E.R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juarez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8, 151. doi:https://doi.org/10.3390/plants8060151
  • Prasad, R., Bhattacharyya, A., & Nguyen, Q.D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8,1-13. doi:https://doi.org/10.3389/fmicb.2017.01014
  • Prasad, S. (2014). Nanobiosensors: The future for diagnosis of disease? Nanobiosesnsors in Disease Diagnosis, 3, 1–10. doi:https://doi.org/10.2147/ndd.s39421
  • Preetha, S., Kannan, M., Lokesh, S., Viji, N., Prithiva, J.N., & Gowtham, V. (2018). Titanium dioxide (TiO2) nanoparticles as a novel insecticide against diamondback moth, Plutella xylostella L. in cauliflower. Trends in Biosciences, 11, 2999–3003.
  • Rai, R.V., & Jamuna Bai, A. (2011). Nanoparticles and their potential application as antimicrobials, science against microbial pathogens: Communicating current research and technological advances. Microbiology Series, 3, 197–209.
  • Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology, 3, 315–324. doi:https://doi.org/10.4236/jbnb.2012.322039
  • Raigond, P., Raigond, B., Kaundal, B., Singh, B., Joshi, A., & Dutt, S. (2016). Effect of zinc nanoparticles on antioxidative system of potato plants. Journal of Environmental Biology, 38, 435–439. doi:https://doi.org/10.22438/jeb/38/3/MS-209
  • Sajyan, T.K., Naim, L., Sebaaly, Z., Rizkallah, J., Shaban, N., & Sassine, Y.N. (2019). Alleviating the adverse effects of salinity stress on tomato crop (Solanum lycopersicum L.) using nano-fertilizer as foliar application. Acta Horticulturae, 5, 33–40. doi:https://doi.org/10.17660/ActaHortic.2019.1253.5
  • Salem, E.A., Nawito, M.A.S., El-Rahman, A.B.D., & Ahmed, A.E.R. (2019). Effect of silver nano-particles on gray mold of tomato fruits. Journal of Nanotechnology Research, 1, 108–118. doi:https://doi.org/10.26502/jnr.2688-8521009
  • Salem, N.M., Albanna, L.S., & Awwad, A.M. (2015). Green synthesis of nano-sized sulphur and its effect on plant growth. The Journal of Agricultural Science, 8, 188. doi:https://doi.org/10.5539/jas.v8n1p188
  • Samarah, N.H., Wang, H., & Welbaum, G.E. (2016). Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Science and Technology, 44, 1–15. doi:https://doi.org/10.15258/sst.2016.44.3.18
  • Savassa, S.M., Duran, N.M., Rodrigues, E.S., Almeida, E., Gestel, C.A.M., Bompadre, T.F.V., & De Carvalho, H.W.P. (2018). Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X-ray spectroscopy. ACS Applied Nano Materials, 1, 6414–6426. doi:https://doi.org/10.1021/acsanm.8b01619
  • Saxena, R., Tomar, R.S., & Kumar, M. (2016). Exploring nanobiotechnology to mitigate abiotic stress in crop plants. Journal of Pharmaceutical Sciences and Research, 8, 974–980.
  • Shafie, R.M., Salama, A.M., & Farroh, K.Y. (2018). Silver nanoparticles activity against Tomato spotted wilt virus. Middle East Journal of Applied Sciences, 7, 1251–1267.
  • Shah, M.A., Wani, S.H., & Khan, A.A. (2016). Nanotechnology and insecticidal formulations. Journal of Food Bioengineering and Nanoprocessing, 1, 285–310.
  • Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24, 1–23. doi:https://doi.org/10.3390/molecules24142558
  • Sharma, H., Dhirta, B., & Shirkot, P. (2017). Evaluation of biogenic iron nano formulations to control Meloidgyne incognita in okra. International Journal of Chemical Studies, 5, 1278–1284.
  • Siddiqui, Z.A., Parveen, A., Ahmad, L., & Hashem, A. (2019). Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 249, 374–382. doi:https://doi.org/10.1016/j.scienta.2019.01.054
  • Srivastava, G., Das, C.K., Das, A., Singh, S.K., Roy, M., Kim, H., … Das, M. (2014). Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Advances, 4, 58495–58504. doi:https://doi.org/10.1039/c4ra06861k
  • Taimooz, S.H. (2018). Behavior of some nanomaterials in improving the growth of onion plant, Allium cepa and its effect on Pythium aphanidermatum. Plant Archives, 18, 857–862. http://plantarchives.org/PDF%20181/857-862%20(PA3%204156).pdf
  • Talebi, S., Majd, A., Mirzai, M., Jafari, S., & Abedini, M. (2015). The study of nano-silica effects on qualitative and quantitative performance of potato (Solanum tuberosum L.). Biological Forum, 7, 879–883.
  • Taskin, M.B., Sahin, O., Taskin, H., Atakol, O., Inal, A., & Gunes, A. (2018). Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativaL.) plant. Journal of Plant Nutrition, 41, 1148–1154. doi:https://doi.org/10.1080/01904167.2018.1433836
  • Teng, Q., Zhang, D., Niu, X., & Jiang, C. (2018). Influences of application of slow-release nanofertilizer on green pepper growth, soil nutrients and enzyme activity. Earth and Environmental Science, 208, 26–28. doi:https://doi.org/10.1088/1755-1315/208/1/012014
  • Thakur, R.K., Dhirta, B., & Shirkot, P. (2018). Studies on effect of gold nanoparticles on Meloidogyne incognita and tomato plant growth and development. Preprint from bioRxiv. doi: https://doi.org/10.1101/428144
  • Thirumurugan, G., Shaheedha, S.M., & Dhanaraju, M.D. (2009). In-vitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using. Phytophthora Infestans. International Journal of ChemTech Research, 1, 714–716.
  • Urkude, R. (2019). Application of nanotechnology in insect-pests management. The International Research Journal of Science and Engineering, 7, 151–156.
  • Vargas, E.R.L., Ortiz, H.O., Pliego, G.C., Romenus, K.D.A., Fuente, C.D.L., Mendoza, A.B., & Maldonado, A.J. (2018). Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8, 1020. doi:https://doi.org/10.3390/app8071020
  • Vinutha, J.S., Bhagat, D., & Bakthavatsalam, N. (2013). Nanotechnology in the management of polyphagous pest Helicoverpa armigera. Journal of Academia and Industrial Research, 1, 606–608.
  • Wang, C., Jiang, K., Wu, B., Zhou, J., & Lv, Y. (2018). Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Ecotoxicology, 27, 1–10. doi:https://doi.org/10.1007/s10646-018-1966-9
  • Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications on food safety. Metallomics, 4, 1105–1112. doi:https://doi.org/10.1039/c2mt20149f
  • Wang, X., Xu, J., Wang, X., Qiu, B., Cuthbertson, A.G.S., Du, C., … Ali, S. (2019). Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Society of Chemical Industry, 75, 2174–2181. doi:https://doi.org/10.1002/ps.5340
  • Wang, Y., Hu, J., Dai, Z., Li, J., & Huang, J. (2016). In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiology and Biochemistry, 108, 353–360. doi:https://doi.org/10.1016/j.plaphy.2016.08.003
  • Wang, Y., & Xia, Y. (2004). Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters, 4, 2047–2050. doi:https://doi.org/10.1021/nl048689j
  • Waqas, M., Korres, N.E., Khan, D., & Nizami, A.S. (2019). Advances in the concept and methods of seed priming. In Hasanuzzaman, Mirza, Fotopoulos, Vasileios, (Eds.),  Priming and pretreatment of seeds and seedlings’ (pp. 11–43). Springer Nature Singapore Pte Ltd. doi:https://doi.org/10.1007/978-981-13-8625-1
  • Wolska, J.C., Mazur, K., Niedzinska, M., Kowalczyk, K., & Zolnierczyk, P. (2018). The influence of foliar fertilizers on the quality and yield of sweet pepper (Capsicum annuum L.). Folia Horticulturae, 30, 183–190. doi:https://doi.org/10.2478/fhort-2018-0008
  • Xiong, T., Dumat, C., & Dappe, V. (2017). Copper oxide nanoparticle foliar uptake, phytotoxicity and consequences for sustainable urban agriculture. Environmental Science & Technology, 51, 5242–5251. doi:https://doi.org/10.1021/acs.est.6b05546
  • Xu, J., Luo, X.S., Wang, Y., & Feng, Z. (2017). Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environmental Science and Pollution Research, 25, 6026–6035. doi:https://doi.org/10.1007/s11356-017-0953-7
  • Yadav, A.S., & Srivastava, D.S. (2015). Application of nanotechnology in weed management: A Review. Journal of Crop Science and Technology, 4, 21–23. doi:https://doi.org/10.37591/rrjocst.v4i2.651
  • Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F., & Yang, P. (2007). The improvement of spinach growth by nano-anatase TiO2 treatment Is related to nitrogen photoreduction. Biological Trace Element Research, 119, 77–88. doi:https://doi.org/10.1007/s12011-007-0046-4
  • Yassen, A., Abdallah, E., Gaballah, M., & Zaghloul, S. (2017). Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). International Journal of Agricultural Research, 12, 130–135. doi:https://doi.org/10.3923/ijar.2017.130.135
  • Zahedi, S.M., Karimi, M., & Da Silva, J.A.T. (2019). The use of nanotechnology to increase quality and yield of fruit crops. Society of Chemical Industry, 100, 25–31. doi:https://doi.org/10.1002/jsfa.10004
  • Zayed, M.M., Elkafafi, S.H., Zedan, A.M.G., & Dawoud, S.F.M. (2017). Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production Mansoura University, 8, 577–585. doi:https://doi.org/10.21608/jpp.2017.40468
  • Zhang, Z., Li, M., Chen, W., Zhu, S., Liu, N., & Zhu, L. (2010). Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environmental Pollution, 158, 514–519. doi:https://doi.org/10.1016/j.envpol.2009.08.024
  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N.A., & Bosch, S.M. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sciences, 289, 1–11. doi:https://doi.org/10.1016/j.plantsci.2019.110270
  • Zuverza-Mena, N., Martinez-Fernandez, D., Du, W., Hernandez-Viezcas, J.A., Bonilla-Bird, N., Lopez-Moreno, M.L., … Gardea-Torresdey, J.L. (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-a review. Plant Physiology and Biochemistry, 110, 236–264. doi:https://doi.org/10.1016/j.plaphy.2016.05.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.