89
Views
0
CrossRef citations to date
0
Altmetric
Article

The role of supplemental lighting during late fall and winter on photosynthetic and non-photosynthetic pigments biosynthesis of cut rose flower (Rosa hybrida cv. ‘Dolce Vita’)

, ORCID Icon, &
Pages 431-442 | Received 28 Apr 2023, Accepted 16 Dec 2023, Published online: 26 Dec 2023

References

  • Aguirre-Becerra, H., García-Trejo, J. F., Vázquez-Hernández, C., Alvarado, A. M., Feregrino-Pérez, A. A., Contreras-Medina, L. M., & Guevara-Gonzalez, R. G. (2020). Effect of extended photoperiod with a fixed mixture of light wavelengths on tomato seedlings. Journal of the American Society for Horticultural Science, 55(11), 1832–1839. https://doi.org/10.21273/HORTSCI15342-20
  • Akincilar, B., & Canli, F. A. (2015). Effect of light intensity on in vitro growth and flowering of ‘aprikola’ rose. Journal of Cell and Plant Sciences, 5(1), 15–19.
  • Armitage, A. M., & Tsujita, M. J. (1979a). The effect of nitrogen concentration and supplemental light on the growth and quality of ‘Caliente’ roses. HortScience, 14(5), 614–615. https://doi.org/10.21273/HORTSCI.14.5.614
  • Armitage, A. M., & Tsujita, M. J. (1979b). Supplemental lighting and nitrogen nutrition effects on yield and quality of forever yours roses. Canadian Journal of Plant Science, 59(2), 343–350. https://doi.org/10.4141/cjps79-056
  • Asaoka, M., & Heins, R. D. (1982). Influence of supplemental light and preforcing storage treatments on the forcing of ‘red Garnette’ rose as a pot plant. Journal of the American Society for Horticultural Science, 107(4), 548–552. https://doi.org/10.21273/JASHS.107.4.548
  • Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), ly052. https://doi.org/10.1093/aobpla/ply052
  • Bian, Z. H., Yang, Q. C., & Liu, W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture, 95(5), 869–877. https://doi.org/10.1002/jsfa.6789
  • Bredmose, N. (1997). Chronology of three physiological development phases of single-stemmed rose (Rosa hybrida L.) plants in response to increment in light quantum integral. Scientia Horticuhurae, 69(1–2), 107–l15. https://doi.org/10.1016/S0304-4238(96)00997-1
  • Bredmose, N. (1998). Growth, flowering, and postharvest performance of single-stemmen Rose (Rosa hybrid L.) plants in response to light quantum integral and plant population density. International Society for Horticultural Science, 515, 105–110. http://123/4/article-p569.xml
  • Carvalho, I. S., Cavaco, T., Carvalho, L. M., & Duque, P. (2010). Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.) leaves. Food Chemistry, 118(2), 384–390. https://doi.org/10.1016/j.foodchem.2009.05.005
  • Chen, D. Q., Li, Z. Y., Pan, R. C., & Wang, X. J. (2006). Anthocyanin accumulation mediated by blue light and cytokinin in arabidopsis seedlings. Journal of Integrative Plant Biology, 48(4), 420–425. https://doi.org/10.1111/j.1744-7909.2006.00234.x
  • Davis, P. A., & Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security, 5(4), 223–238. https://doi.org/10.1002/fes3.97
  • Fanourakis, D., Hyldgaard, B., Giday, H., Aulik, I., Bouranis, D., Körner, O., & Ottosen, C. (2019). Stomatal anatomy and closing ability is affected by supplementary light intensity in rose (Rosa hybrida L.). Horticultural Science, 46(2), 81–89. https://doi.org/10.17221/144/2017-HORTSCI
  • García-Caparrós, P., Almansa, E. M., Chica, R. M., & Lao, M. T. (2019). Effects of artificial light treatments on growth, mineral composition, physiology, and pigment concentration in dieffenbachia maculata “compacta” plants. Sustainability, 11(10), 2867. https://doi.org/10.3390/su11102867
  • Giusti, M., & Wrolstad, R. (2005). Characterization and measurement of anthocyanins by UV–visible spectroscopy unit F1.2. In R. E. Wrolstad & S. J. Schwartz (Eds.), Handbook of food analytical chemistry (pp. 19–31). Wiley.
  • Harada, T., & Komagata, T. (2014). Effects of long-day treatment using fluorescent lamps and supplemental lighting using white LEDs on the yield of cut rose flowers. Japan Agricultural Research Quarterly: JARQ, 48(4), 443–448. https://doi.org/10.6090/jarq.48.443
  • Huché-Thélier, L., Crespel, L., Gourrierec, J. L., Morel, P., Sakr, S., & Leduc, N. (2016). Light signaling and plant responses to blue and UV radiations—perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
  • Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell and Environment, 33(8), 1239–1247. https://doi.org/10.1111/j.1365-3040.2010.02154.x
  • Kaiser, E., Ouzounis, T., Giday, H., Schipper, R., Heuvelink, E., & Marcelis, L. F. M. (2019). Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, 9, 2002. https://doi.org/10.3389/fpls.2018.02002
  • Khaleghi, A., & Khadivi, A. (2020). Morphological characterization of damask rose (Rosa × damascena herrm.) germplasm to select superior accessions. Genetic Resources and Crop Evolution, 67(8), 1981–1997. https://doi.org/10.1007/s10722-020-00954-z
  • Kong, Y., Llewellyn, D., Zheng, Y., & Willenborg, C. (2018). Response of growth, yield, and quality of pea shoots to supplemental light-emitting diode lighting during winter greenhouse production. Canadian Journal of Plant Science, 98(3), 732–740. https://doi.org/10.1139/cjps-2017-0276
  • Kopsell, D. A., Sams, C. E., Barickman, T. C., & Morrow, R. C. (2014). Sprouting broccoli accumulates higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. Journal of the American Society for Horticultural Science, 139(4), 469–477. https://doi.org/10.21273/JASHS.139.4.469
  • Landi, M., Zivcak, M., Sytar, O., Brestic, M., & Allakhverdiev, S. (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1861(2), 148131. https://doi.org/10.1016/j.bbabio.2019.148131
  • Lanoue, J., Thibodeau, A., Little, C., Zheng, J., Grodzinski, B., & Hao, X. (2021). Light spectra and root stocks affect response of greenhouse tomatoes to long photoperiod of supplemental lighting. Plants, 10(8), 1674. https://doi.org/10.3390/plants10081674
  • Lee, M. J., Seo, H. S., Min, S. Y., Lee, J., Park, S., Jeon, J. B., Kim, J., & Oh, W. (2021). Effects of supplemental lighting with high-pressure sodium or plasma lamps on quality and yield of cut roses. Horticultural Science and Technology, 39(1), 49–61. https://doi.org/10.7235/HORT.20210005
  • Lichtenthaler, H. K., & Wellburnt, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  • Liu, X., Fang, P., Wang, Z., Cao, X., Yu, Z., Chen, X., & Zhang, Z. (2022a). Comparative RNA-seq analysis reveals a critical role for ethylene in rose (Rosa hybrida) susceptible response to Podosphera pannosa. Frontiers in Plant Science, 13, 1018427. https://doi.org/10.3389/fpls.2022.1018427
  • Liu, K., Gao, M., Jiang, H., Ou, S., Li, X., He, R., Li, Y., & Liu, H. (2022b). Light intensity and photoperiod affect growth and nutritional quality of brassica microgreens. Molecules, 27(3), 883. https://doi.org/10.3390/molecules27030883
  • Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M. M. (2017). Blue and red LED illumination improves growth and bioactive compounds contents in Acyanic and cyanic Ocimum basilicum L. Microgreens. Microgreens Molecules, 22(12), 2111. https://doi.org/10.3390/molecules22122111
  • Maas, F. M., & Bakx, E. J. (1995). Effects of light on growth and flowering of Rosa hybrids `Mercedes’. Journal of the American Society for Horticultural Science, 120(4), 571–576. https://doi.org/10.21273/JASHS.120.4.571
  • Matysiak, B. (2021). The effect of supplementary LED lighting on the morphological and physiological traits of miniature Rosa × Hybrida ‘aga’ and the development of powdery mildew (podosphaera pannosa) under greenhouse conditions. Plants, 10(2), 417. https://doi.org/10.3390/plants10020417
  • Modarelli, G. C., Paradiso, R., Arena, C., De Pascale, S., & Van Labeke, M. C. (2022). High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae, 8(2), 114. https://doi.org/10.3390/horticulturae8020114
  • Mortensen, L. M., & Fjeld, T. (1998). Effects of air humidity, lighting period and lamp type on growth and vase life of roses. Scientia Horticulturae, 73(4), 229–237. https://doi.org/10.1016/S0304-4238(98)00075-2
  • Naing, A. H., Jeon, S. M., Park, J. S., Kim, C. K., & Charles, M. T. (2016). Combined effects of supplementary light and CO2 on rose growth and the production of good quality cut flowers. Canadian Journal of Plant Science, 96(3), 503–510. https://doi.org/10.1139/cjps-2015-0304
  • Park, C. H., Kim, N. S., Park, J. S., Lee, S. Y., Lee, J. W., & Park, S. U. (2019). Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). Foods, 8(2), 76. https://doi.org/10.3390/foods8020076
  • Petrella, D. P., Metzger, J. D., Blakeslee, J. J., Nangle, E. J., & Gardner, D. S. (2016). Anthocyanin production using rough bluegrass treated with high-intensity light. Journal of the American Society for Horticultural Science, 51(9), 1111–1120. https://doi.org/10.21273/hortsci10878-16
  • Rafi, Z. N., & Ramezanian, A. (2013). Vase life of cut rose cultivars ‘avalanche’ and ‘fiesta’ as affected by Nano-Silver and S-carvone treatments. South African Journal of Botany, 86, 68–72. https://doi.org/10.1016/j.sajb.2013.02.167
  • Reyes, L. F., Miller, J. C., & Cisneros-Zevallos, L. (2004). Environmental conditions influence the content and yield of anthocyanins and total phenolics in purple- and red-flesh potatoes during tuber development. American Journal of Potato Research, 81(3), 187–193. https://doi.org/10.1007/BF02871748
  • Shi, L., He, S., Wang, Z., & Kim, W. S. (2021). Influence of nocturnal supplemental lighting and different irrigation regimes on vase life and vase performance of the hybrid Rose ‘charming black. Horticultural Science and Technology, 39(1), 23–36. https://doi.org/10.7235/HORT.20210003
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Tripathy, B. C., & Brown, C. S. (1995). Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiology, 107(2), 407–411. https://doi.org/10.1104/pp.107.2.407
  • Turkmen, N., Sari, F., & Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718. https://doi.org/10.1016/j.foodchem.2004.12.038
  • Van Labeke, M. C., Dambre, P., & Bodson, M. (2000). Effects of supplementary lighting and bending technique on growth, flowering and carbohydrate status of Rosa hybrida ‘Frisco’. Acta horticulturae, 515, 245–256. https://doi.org/10.17660/ActaHortic.2000.515.31
  • Viršilė, A., Brazaitytė, A., Vaštakaitė-Kairienė, V., Miliauskienė, J., Jankauskienė, J., Novičkovas, A., & Samuolienė, G. (2019). Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. Journal of the Science of Food and Agriculture, 99(14), 6608–6619. https://doi.org/10.1002/jsfa.9948
  • Wan, Y., Wu, Y., Zhang, M., Hong, A., & Liu, Y. (2020). Effects of photoperiod extension via red–blue light-emitting diodes and high-pressure sodium lamps on the growth and photosynthetic characteristics in Paeonia lactiflora. Acta Physiologiae Plantarum, 42(12), 174. https://doi.org/10.1007/s11738-020-03157-2
  • Wei, W., Zhao, J., Hu, J., & Jeong, B. R. (2019). Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic gene and proteins. Agronomy, 9(6), 339. https://doi.org/10.3390/agronomy9060339
  • Wiseley, D., Richard, S., & Lindstrom, R. S. (1972). Supplemental light and growth of Rose during periods of low light intensity. HortScience, 7(3), 292–293. https://doi.org/10.21273/HORTSCI.7.3.292
  • Yan, Z., He, D., Niu, G., & Zhai, H. (2019). Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 248, 138–144. https://doi.org/10.1016/j.scienta.2019.01.002
  • Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11(2), 33–40. https://doi.org/10.25165/j.ijabe.20181102.3240
  • Zieslin, N., & Mor, Y. (1990). Light on roses. A review. Scientia Horticulturae, 43(1–2), 1–14. https://doi.org/10.1016/0304-4238(90)90031-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.