93
Views
0
CrossRef citations to date
0
Altmetric
Article

Assessing the modifications and degradation of cell wall polymers during the ripening process of Rubus ulmifolius Schott fruit

, , , &
Pages 471-479 | Received 19 Oct 2023, Accepted 29 Dec 2023, Published online: 08 Jan 2024

References

  • Amos, R. A., & Mohnen, D. (2019). Critical review of plant cell wall matrix polysaccharide glycosyltransferase activities verified by heterologous protein expression. Frontiers in Plant Science, 10, 915. https://www.frontiersin.org/articles/10.3389/fpls.2019.00915
  • Andler, R., Rojas, V., Pino, V., Castro, R. I., Valdés, C., Kumar, V., Peña, C., & Díaz-Barrera, A. (2023). Efficient production of a polyhydroxyalkanoate by Azotobacter vinelandii OP using apple residues as promising feedstock. International Journal of Biological Macromolecules, 242, 124626. https://doi.org/10.1016/j.ijbiomac.2023.124626
  • Awad, M. A., & de Jager, A. (2003). Influences of air and controlled atmosphere storage on the concentration of potentially healthful phenolics in apples and other fruits. Postharvest Biology and Technology, 27(1), 53–58. https://doi.org/10.1016/S0925-5214(02)00189-8
  • Berglund, J., Angles d’Ortoli, T., Vilaplana, F., Widmalm, G., Bergenstråhle-Wohlert, M., Lawoko, M., Henriksson, G., Lindström, M., & Wohlert, J. (2016). A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. The Plant Journal: For Cell and Molecular Biology, 88(1), 56–70. https://doi.org/10.1111/tpj.13259
  • Brummell, D., Harpster, M., Civello, P., Palys, J., Bennett, A., & Dunsmuir, P. (1999). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. The Plant Cell, 11(11), 2203–2216. https://doi.org/10.1105/tpc.11.11.2203
  • Castro, R. I., González-Feliu, A., Muñoz-Vera, M., Valenzuela-Riffo, F., Parra-Palma, C., & Morales-Quintana, L. (2021). Effect of exogenous auxin treatment on cell wall polymers of strawberry fruit. International Journal of Molecular Sciences, 22(12), 6294. https://doi.org/10.3390/ijms22126294
  • Castro, R. I., Gonzalez-Feliu, A., Valenzuela-Riffo, F., Parra-Palma, C., & Morales-Quintana, L. (2021). Changes in the cell wall components produced by exogenous abscisic acid treatment in strawberry fruit. Cellulose, 28(3), 1555–1570. https://doi.org/10.1007/s10570-020-03607-7
  • Castro, R. I., & Morales-Quintana, L. (2019). Study of the cell wall components produced during different ripening stages through thermogravimetric analysis. Cellulose, 26(5), 3009–3020. https://doi.org/10.1007/s10570-019-02305-3
  • Castro, R. I., Muñoz-Vera, M., & Morales-Quintana, L. (2021). Evaluation of cell wall modification in two strawberry cultivars with contrasted softness. Agronomy, 11(6), 1100. https://doi.org/10.3390/agronomy11061100
  • Castro, R. I., Vásquez-Rojas, C., Cortiella, M. G. I., Parra-Palma, C., Ramos, P., & Morales-Quintana, L. (2022). Evolution of the volatile organic compounds, phenols and antioxidant capacity during fruit ripening and development of Rubus ulmifolius schott fruits. Horticulturae, 9(1), 13. https://doi.org/10.3390/horticulturae9010013
  • Chundawat, S. P. S., Beckham, G. T., Himmel, M. E., & Dale, B. E. (2011). Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual Review of Chemical and Biomolecular Engineering, 2(1), 121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205
  • Cosgrove, D. J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 391–417. https://doi.org/10.1146/annurev.arplant.50.1.391
  • Cosgrove, D. J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. Current Opinion in Plant Biology, 22, 122–131. https://doi.org/10.1016/j.pbi.2014.11.001
  • Dawson, D. M., Melton, L. D., & Watkins, C. B. (1992). Cell wall changes in nectarines (Prunus persica) 1: Solubilization and depolymerization of Pectic and neutral polymers during ripening and in mealy fruit. Plant Physiology, 100(3), 1203–1210. https://doi.org/10.1104/pp.100.3.1203
  • Fasoli, M., Dell’anna, R., Dal Santo, S., Balestrini, R., Sanson, A., Pezzotti, M., Monti, F., & Zenoni, S. (2016). Pectins, Hemicelluloses and celluloses show specific dynamics in the internal and external surfaces of grape berry skin during ripening. Plant and Cell Physiology, 57(6), 1332–1349. https://doi.org/10.1093/pcp/pcw080
  • Hammerton, J. M., & Ross, A. B. (2022). Inorganic salt catalysed hydrothermal carbonisation (HTC) of cellulose. Catalysts, 12(5), 492. Article 5. https://doi.org/10.3390/catal12050492
  • Indran, S., Edwin Raj, R., & Sreenivasan, V. S. (2014). Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers, 110, 423–429. https://doi.org/10.1016/j.carbpol.2014.04.051
  • Jara, K., Castro, R. I., Ramos, P., Parra-Palma, C., Valenzuela-Riffo, F., & Morales-Quintana, L. (2019). Molecular insights into FaEG1, a strawberry endoglucanase enzyme expressed during strawberry fruit ripening. Plants, 8(6), 140. https://doi.org/10.3390/plants8060140
  • Kader, A. A. (2022). Postharvest technology of horticultural crops. University of California Agriculture and Natural Resources
  • Martins, A., Barros, L., Carvalho, A. M., Santos-Buelga, C., Fernandes, I. P., Barreiro, F., & Ferreira, I. C. F. R. (2014). Phenolic extracts of Rubus ulmifolius schott flowers: Characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food & Function, 5(6), 1091–1100. https://doi.org/10.1039/C3FO60721F
  • Mazumder, S., & Zhang, N. (2023). Cellulose–hemicellulose–lignin interaction in the secondary cell wall of coconut endocarp. Biomimetics, 8(2), 188. Article 2. https://doi.org/10.3390/biomimetics8020188
  • Morales-Quintana, L., & Ramos, P. (2019). Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review. Food Research International, 119, 769–776. https://doi.org/10.1016/j.foodres.2018.10.059
  • Morales-Quintana, L., Tapia-Valdebenito, D., Castro, R. I., Rabert, C., Larama, G., Gutiérrez, A., & Ramos, P. (2022). Characterization of the cell wall component through thermogravimetric analysis and its relationship with an expansin-like protein in Deschampsia antarctica. International Journal of Molecular Sciences, 23(10), 5741. https://doi.org/10.3390/ijms23105741
  • Nardi, C. F., Villarreal, N. M., Rossi, F. R., Martínez, S., Martínez, G. A., & Civello, P. M. (2015). Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Plant Molecular Biology, 88(1), 101–117. https://doi.org/10.1007/s11103-015-0311-4
  • Pilling, E., & Höfte, H. (2003). Feedback from the wall. Current Opinion in Plant Biology, 6(6), 611–616. https://doi.org/10.1016/j.pbi.2003.09.004
  • Pombo, M. A., Dotto, M. C., Martínez, G. A., & Civello, P. M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51(2), 141–148. https://doi.org/10.1016/j.postharvbio.2008.07.007
  • Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841
  • Ramos, P., Parra-Palma, C., Figueroa, C. R., Zuñiga, P. E., Valenzuela-Riffo, F., Gonzalez, J., Gaete-Eastman, C., & Morales-Quintana, L. (2018). Cell wall-related enzymatic activities and transcriptional profiles in four strawberry (Fragaria x ananassa) cultivars during fruit development and ripening. Scientia Horticulturae, 238, 325–332. https://doi.org/10.1016/j.scienta.2018.04.064
  • Sain, M., & Panthapulakkal, S. (2006). Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products, 23(1), 1–8. https://doi.org/10.1016/j.indcrop.2005.01.006
  • Vaaje-Kolstad, G., Farkaš, V., Hrmova, M., & Fincher, G. B. (2010). Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1800(7), 674–684. https://doi.org/10.1016/j.bbagen.2010.04.001
  • Villanueva, M. J., Tenorio, M. D., Esteban, M. A., & Mendoza, M. C. (2004). Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chemistry, 87(2), 179–185. https://doi.org/10.1016/j.foodchem.2003.11.009
  • Wang, D., Yeats, T. H., Uluisik, S., Rose, J. K. C., & Seymour, G. B. (2018). Fruit softening: Revisiting the role of pectin. Trends in Plant Science, 23(4), 302–310. https://doi.org/10.1016/j.tplants.2018.01.006
  • Wang, Y., Ding, S., Chen, F., Xiao, G., Fu, X., & Wang, R. (2021). Changes in pectin characteristics of jujube fruits cv “dongzao” and “jinsixiaozao” during cold storage. Journal of Food Science, 86(7), 3001–3013. https://doi.org/10.1111/1750-3841.15800
  • Xiao, S., Gao, R., Lu, Y., Li, J., & Sun, Q. (2015). Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers, 119, 202–209. https://doi.org/10.1016/j.carbpol.2014.11.041
  • Xiao, Y., Kuang, J., Qi, X., Ye, Y., Wu, Z.-X., Chen, J., & Lu, W. (2018). A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnology Journal, 16(1), 151–164. https://doi.org/10.1111/pbi.12756
  • Zhang, W., Guo, M., Yang, W., Liu, Y., Wang, Y., & Chen, G. (2022). The role of cell wall polysaccharides disassembly and enzyme activity changes in the softening process of Hami Melon (Cucumis melo L.). Foods, 11(6), 841. Article 6. https://doi.org/10.3390/foods11060841
  • Zhu, X., Zhang, C., Wu, W., Li, X., Zhang, C., & Fang, J. (2017). Enzyme activities and gene expression of starch metabolism provide insights into grape berry development. Horticulture Research, 4(1), 17018. https://doi.org/10.1038/hortres.2017.18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.