59
Views
0
CrossRef citations to date
0
Altmetric
Review

Temperatures above 30oC decrease leaf growth in strawberry under global warming

Pages 507-530 | Received 15 Dec 2023, Accepted 21 May 2024, Published online: 06 Jun 2024

References

  • Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  • Abdelrahman, M. H. (1984). Growth and productivity of strawberry cultivars at high temperature [ Ph. D. Thesis]. Mahattan, Kansas, USA: Kansas State University.
  • Ade Ademilua, O. E., & Botha, C. E. J. (2005). A re-evaluation of plastochron index determination in peas – a case for using leaflet length. South Africa Journal of Botany, 71(1), 76–80. https://doi.org/10.1016/S0254-6299(15)30152-6
  • Agehara, S., & Nunes, M. C. D. N. (2021). Season and nitrogen fertilization effects on yield and physicochemical attributes of strawberry under subtropical climate conditions. Agronomy, 11(7), 1391. https://doi.org/10.3390/agronomy11071391
  • Alvarado-Raya, H. E., Rivera-Del-Río, R., Ramírez-Arias, A., & Calderón-Zavala, G. (2019). Phenological description of three Mexican new cultivars of strawberry (Fragaria x ananassa Duch.) in vegetative propagation grown on volcanic gravel. Acta Horticulturae, 1265, 281–286. https://doi.org/10.17660/ActaHortic.2019.1265.39
  • Ambrose, B. A., & Ferrándiz, C. (2013). Development and the evolution of plant form. Annual Plant Reviews, 45, 277–320. https://doi.org/10.1002/9781119312994.apr0494
  • Andrade Júnior, V. C., Oliveira, A. J. M., Guimãraes, A. G., Ferreira, M. A. M., Cavalcanti, V. P., & Fernandes, J. S. C. (2020). Repeatability and heritability of production characters in strawberry fruits. Horticultura Brasileira, 38(1), 89–93. https://doi.org/10.1590/s0102-053620200114
  • Andrés, J., Caruana, J., Liang, J., Samad, S., Monfort, A., Liu, Z., Hytönen, T., & Koskela, E. A. (2021). Woodland strawberry axillary bud fate is dictated by a crosstalk of environmental and endogenous factors. Plant Physiology, 187(3), 1221–1234. https://doi.org/10.1093/plphys/kiab421
  • Antunes, L. E. C., Júnior, C. R., & Schwengher, J. E. (2016). Morangueiro (Strawberry). Brasilia, Brazil: Embrapa.
  • Antunes, O. T., Calvete, E. O., Rocha, H. C., Nienow, A. A., Mariani, F., & Wesp, C. D. L. (2006). Floração, frutificação e maturação de frutos de morangueiro cultivados em ambiente protegido. Horticultura Brasileira, 24(4), 426–430. https://doi.org/10.1590/S0102-05362006000400006
  • Arney, S. E. (1947). The respiration of strawberry leaves attached to the plant. New Phytologist, 46(1), 68–96. https://doi.org/10.1111/j.1469-8137.1947.tb05072.x
  • Arney, S. E. (1953a). The initiation, growth, and emergence of leaf primordia in Fragaria. Annals of Botany, 17(3), 477–492. https://doi.org/10.1093/oxfordjournals.aob.a083364
  • Arney, S. E. (1953b). Studies in growth and development in the genus Fragaria I. Factors affecting the rate of leaf production in Royal Sovereign strawberry. Journal of Horticultural Science, 28(2), 73–84. https://doi.org/10.1080/00221589.1953.11513771
  • Arney, S. E. (1954). Studies of growth and development in the genus Fragaria: The growth of leaves and shoots. Annals of Botany, 18(3), 349–365. https://doi.org/10.1093/oxfordjournals.aob.a083400
  • Arney, S. E. (1955). Studies of growth and development in the genus Fragaria: Winter growth. Annals of Botany, 19(2), 265–276. https://doi.org/10.1093/oxfordjournals.aob.a083428
  • Arney, S. E. (1956). Studies of growth and development in the genus Fragaria: The effect of photoperiod and temperature on leaf size. Journal of Experimental Botany, 7(1), 65–79. https://doi.org/10.1093/jxb/7.1.65
  • Arney, S. E. (1968). The effect of leaf primordia and auxin on leaf initiation rate in strawberry. Planta, 82(3), 235–245. https://doi.org/10.1007/BF00398202
  • Asalf, B., Gadoury, D. M., Tronsmo, A. M., Seem, R. C., Dobson, A., Peres, N. A., & Stensvand, A. (2014). Ontogenic resistance of leaves and fruit, and how leaf folding influences the distribution of powdery mildew on strawberry plants colonized by Podosphaera aphanis. Phytopathology, 104(9), 954–963. https://doi.org/10.1094/PHYTO-12-13-0345-R
  • Atkinson, C. J., Doods, P. A. A., Ford, Y. Y., Le Mière, J., Taylor, J. M., Blake, P. S., & Paul, N. (2006). Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria × ananassa productivity and fruit ellagic acid and ascorbic acid concentrations. Annal of Botany, 97(3), 429–441. https://doi.org/10.1093/aob/mcj046
  • Balasooriya, H. N., Dassanayake, K. B., Seneweera, S., & Ajlouni, S. (2018). Interaction of elevated carbon dioxide and temperature on strawberry (Fragaria × ananassa) growth and fruit yield. International Journal of Agricultural and Biosystems Engineering, 12, 279–287. https://doi.org/10.1371/journal.pone.0041000
  • Banasiak, A., & Gola, E. M. (2023). Organ patterning at the shoot apical meristem (SAM): The potential role of the vascular system. Symmetry, 15(2), 364. https://doi.org/10.3390/sym15020364
  • Barth, E., de Resende, J. T. V., Mariguele, K. H., de Resende, M. D. V., da Silva, A. L. B. R., & Ru, S. (2022). Multivariate analysis methods improve the selection of strawberry genotypes with low cold requirement. Scientific Reports, 12(1), 11458. https://doi.org/10.1038/s41598-022-15688-4
  • Barth, E., Resende, J. T. V. D., Moreira, A. F. P., Mariguele, K. H., Zeist, A. R., Silva, M. B., Stulzer, G. C. G., Mafra, J. G. M., Simões Azeredo Gonçalves, L., Roberto, S. R., & Youssef, K. (2020). Selection of experimental hybrids of strawberry using multivariate analysis. Agronomy, 10(4), 598. https://doi.org/10.3390/agronomy10040598
  • Bedry, S. K. (2017). Investigation into the annual cycle of development in Fragaria vesca [ Ph. D. Thesis]. Reading, UK: University of Reading.
  • Bhatia, N., Runions, A., & Tsiantis, M. (2021). Leaf shape diversity: From genetic modules to computational models. Annual Review of Plant Biology, 72, 325–356. https://doi.org/10.1146/annurev-arplant-080720-101613
  • Bird, K. A., Hardigan, M. A., Ragsdale, A. P., Knapp, S. J., VanBuren, R., & Edger, P. P. (2021). Diversification, spread, and admixture of octoploid strawberry in the Western Hemisphere. American Journal of Botany, 108(11), 2269–2281. https://doi.org/10.1002/ajb2.1776
  • Bodson, M., & Verhoeven, B. (2005). Characteristics of dormancy of June-bearing strawberry (Fragaria ×ananassa Duch. cv. Elsanta). International Journal of Fruit Science, 5(1), 51–58. https://doi.org/10.1300/J492v05n01_05
  • Bonhomme, R. (2000). Bases and limits to using ‘degree.day’ units. European Journal of Agronomy, 13(1), 1–10. https://doi.org/10.1016/S1161-0301(00)00058-7
  • Butler, L. M., Fernandez, G. E., & Louws, F. J. (2002). Strawberry plant growth parameters and yield among transplants of different types and from different geographic sources, grown in a plasticulture system. HortTechnology, 12(1), 100–103. https://doi.org/10.21273/HORTTECH.12.1.100
  • Byrne, M. E., & Katsanis, N. (2006). Shoot meristem function and leaf polarity: The role of class III HD–ZIP genes. PLoS Genetics, 2(6), e89. https://doi.org/10.1371/journal.pgen.0020089
  • Caramori, P. H., Caviglione, J. H., Wrege, M. S., Herter, F. G., Hauagge, R., Goncalves, S. L., Citadin, I., & Salaricicce, W. S. (2008). Zoneamento agroclimático para o pessegueiro e a nectarineira no Estado do Paraná. Revista Brasileira de Fruticultura, 30(4), 1040–1044. https://doi.org/10.1590/S0100-29452008000400033
  • Carisse, O., & Bouchard, J. (2010). Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis. Crop Protection, 29(9), 969–978. https://doi.org/10.1016/j.cropro.2010.03.008
  • Casierra-Posada, F., Torres, I. D., & Blanke, M. M. (2013). Fruchtqualität und Ertrag teil-entblätterter Erdbeeren in tropischen Höhenlagen. Gesunde Pflanzen, 65(3), 107–112. https://doi.org/10.1007/s10343-013-0303-8
  • Castro Sánchez-Bermejo, P., Davrinche, A., Matesanz, S., Harpole, W. S., & Haider, S. (2023). Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. New Phytologist, 240(4), 1390–1404. https://doi.org/10.1111/nph.19250
  • Chabot, B. F. (1978). Environmental influences on photosynthesis and growth in Fragaria vesca. New Phytologist, 80(1), 87–98. https://doi.org/10.1111/j.1469-8137.1978.tb02267.x
  • Chabot, B. F., & Chabot, J. F. (1977). Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia, 26(4), 363–377. https://doi.org/10.1007/BF00345535
  • Chatterjee, M., Bermudez-Lozano, C. L., Clancy, M. A., Davis, T. M., Folta, K. M., & Tsiantis, M. (2011). A strawberry KNOX gene regulates leaf, flower and meristem architecture. PLoS One, 6(9), e24752. https://doi.org/10.1371/journal.pone.0024752
  • Chini, G., Bonetti, D., Tozzi, F., Antonetti, M., Pecchioli, S., Burchi, G., Masciandaro, G., & Nin, S. (2023). Wild strawberry production on innovative sediment-based growing media: A reality challenging the traditional concept of “soilless” cultivation. Acta Horticulturae, 1377, 567–574. https://doi.org/10.17660/ActaHortic.2023.1377.70
  • Chiomento, J. L. T., Silveira, D. C., Reichert Júnior, F. W., Dornelles, A. G., dos Santos Trentin, T., & Cravero, V. P. (2024). Prediction of the stability and yield in nine strawberry cultivars in Brazil over two cycles. Journal of Horticultural Science and Biotechnology, 99(2), 179–186. https://doi.org/10.1080/14620316.2023.2242385
  • Clóvis, L. R., Pinto, R. J. B., Uhdre, R. S., Rosa, J. C., Zeni Neto, H., Vivas, M., & Amaral Júnior, A. T. D. (2021). Overall heritability in popcorn estimated by meta-analysis. Acta Scientiarum Agronomy, 43, e53721. https://doi.org/10.4025/actasciagron.v43i1.53721
  • Cocco, K. L. T., Schmidt, D., Caron, B. O., de Souza, V. Q., Fontana, D. C., & de Paula, G. M. (2016). Estimated phyllochron in low tunnel cultivated strawberry cultivars. Ciência Rural, 46(9), 1546–1552. https://doi.org/10.1590/0103-8478cr20150708
  • Cockerton, H. M., Nellist, C. F., Hytönen, T., Litthauer, S., Hopson, K., Whitehouse, A., Sobczyk, M., & Harrison, R. J. (2023). Epistatic modifiers influence the expression of continual flowering in strawberry. Plants People Planet, 5(1), 70–81. https://doi.org/10.1002/ppp3.10300
  • da Costa, R. C., Calvete, E. O., Chiomento, J. L. T., Trentin, N. S., & De Nardi, F. S. (2017). Vegetative stage of strawberry duration determined by the crop year. Revista Brasileira de Fruticultura, 39(5), e–831. https://doi.org/10.1590/0100-29452017831
  • da Costa, R. C., Calvete, E. O., Mendonça, H. F. C., & Cecatto, A. P. (2014a). Phenology, phyllochron, and gas exchanges in frigo and fresh strawberry (Fragaria × ananassa Duch.) plants of cv. Albion. Australian Journal of Crop Science, 8(5), 901–908.
  • da Costa, R. C., Calvete, E. O., Mendonça, H. F. C., & DeCosta, L. A. (2014b). Phenology and leaf accumulation in vernalized and non-vernalized strawberry seedlings in neutral-days. Acta Scientiarum, 36(1), 57–62. https://doi.org/10.4025/actasciagron.v36i1.17285
  • Dash, P. K., Guan, Z., Chase, C. A., Agehara, S., & Zotarelli, L. (2023). A strawberry cropping system design for Florida to improve early yield and water conservation and its economic effect. HortTechnology, 33(6), 512–519. https://doi.org/10.21273/HORTTECH05171-23
  • Daugovish, O., & Larson, K. D. (2009). Strawberry production with protected culture in Southern California. Acta Horticulturae, 842, 163–166. https://doi.org/10.17660/ActaHortic.2009.842.20
  • Davidson, A., Da Silva, D., & DeJong, T. M. (2019). Rate of shoot development (phyllochron) is dependent of carbon availability, shoot type, and rank in peach trees. Trees, 33(6), 1583–1590. https://doi.org/10.1007/s00468-019-01881-y
  • Davidson, A., Da Silva, D., Quintana, B., & DeJong, T. M. (2015). The phyllochron of Prunus persica shoots is relatively constant under controlled growth conditions but seasonally increases in the field in ways unrelated to patterns of temperature or radiation. Scientia Horticulturae, 184, 106–113. https://doi.org/10.1016/j.scienta.2014.12.033
  • Davidson, A., Da Silva, D., Quintana, B., & DeJong, T. M. (2017). The phyllochron of well-watered and water deficit mature peach trees varies with shoot type and vigour. AoB Plants, 9(5), lx042. https://doi.org/10.1093/aobpla/plx042
  • de Freitas, C. H., Martins, F. B., & Abreu, M. C. (2017). Cardinal temperatures for the leaf development of Corymbia citriodora and Eucalyptus urophylla seedlings. Pesquisa Agropecuária Brasileira, 52(5), 283–292. https://doi.org/10.1590/s0100-204x2017000500001
  • De Kort, H., Toivainen, T., Van Nieuwerburgh, F., Andrés, J., Hytönen, T. P., & Honnay, O. (2022). Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants. New Phytologist, 235(4), 1501–1514. https://doi.org/10.1111/nph.18225
  • Dengler, N. G., & Tsukaya, H. (2001). Leaf morphogenesis in dicotyledons: Current issues. International Journal of Plant Sciences, 162(3), 459–464. https://doi.org/10.1086/320145
  • Diaz-Lara, A., Stevens, K. A., Klaassen, V., Hwang, M. S., & Al Rwahnih, M. (2021). Sequencing a strawberry germplasm collection reveals new viral genetic diversity and the basis for new RT-qPCR assays. Viruses, 13(8), 1442. https://doi.org/10.3390/v13081442
  • Diel, M. I., Pinheiro, M. V. M., Cocco, C., Fontana, D. C., Caron, B. O., de Paula, G. M., Pretto, M. M., Thiesen, L. A., & Schmidt, D. (2017a). Phyllochron and phenology of strawberry cultivars from different origins cultivated in organic substrates. Scientia Horticulturae, 220, 226–232. https://doi.org/10.1016/j.scienta.2017.03.053
  • Diel, M. I., Pinheiro, M. V. M., Cocco, C., Thiesen, L., Altíssimo, B. S., Fontana, D. C., Caron, B. O., Testa, V., & Schmidt, D. (2017b). Artificial vernalization in strawberry plants: Phyllochron, production and quality. Australian Journal of Crop Science, 11(10), 1315–1319. https://doi.org/10.21475/ajcs.17.11.10.pne603
  • Dieleman, W. I. J., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M. J., Larsen, K. S., Morgan, J. A., Volder, A., Beier, C., Dukes, J. S., King, J., Leuzinger, S., Linder, S., Luo, Y., Oren, R., De Angelis, P., Tingey, D., Hoosbeek, M. R., & Janssens, I. A. (2012). Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology, 18(9), 2681–2693. https://doi.org/10.1111/j.1365-2486.2012.02745.x
  • Dong, L. J., & He, W. M. (2019). The relative contributions of climate, soil, diversity and interactions to leaf trait variation and spectrum of invasive Solidago canadensis. BMC Ecology, 19(1), 24. https://doi.org/10.1186/s12898-019-0240-1
  • Døving, A., & Mage, F. (2001). Prediction of strawberry fruit yield. Acta Agriculturae Scandinavica Section B Soil and Plant Science, 51(1), 35–42. https://doi.org/10.1080/090647101317187870
  • Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221(1), 32–49. https://doi.org/10.1111/nph.15283
  • Efroni, I., Eshed, Y., & Lifschitz, E. (2010). Morphogenesis of simple and compound leaves: A critical review. The Plant Cell, 22(4), 1019–1032. https://doi.org/10.1105/tpc.109.073601
  • Eller, F., Hyldgaard, B., Driever, S. M., & Ottosen, C.-O. (2020). Inherent trait differences explain wheat cultivar responses to climate factor interactions: New insights for more robust crop modelling. Global Change Biology, 26(10), 5965–5978. https://doi.org/10.1111/gcb.15278
  • Erickson, R. O., & Michelini, F. J. (1957). The plastochron index. American Journal of Botany, 44(4), 297–305. https://doi.org/10.1002/j.1537-2197.1957.tb10544.x
  • Faehn, C., Reichelt, M., Mithöfer, A., Hytönen, T., Mølmann, J., & Jaakola, L. (2023). Acclimation of circadian rhythms in woodland strawberries (Fragaria vesca L.) to Arctic and mid-latitude photoperiods. BMC Plant Biology, 23(1), 483. https://doi.org/10.1186/s12870-023-04491-6
  • Fall, M. L., & Carisse, O. (2022). Dynamic simulation for predicting warning and action thresholds: A novelty for strawberry powdery mildew management. Agriculture and Forestry Meteorology, 312, 108711. https://doi.org/10.1016/j.agrformet.2021.108711
  • Fan, G., Andrés, J., Olbricht, K., Koskela, E., & Hytönen, T. (2022). Natural variation in the control of flowering and shoot architecture in diploid Fragaria species. Frontiers in Plant Science, 13, 832795. https://doi.org/10.3389/fpls.2022.832795
  • Fan, Z., & Whitaker, V. M. (2024). Genomic signatures of strawberry domestication and diversification. The Plant Cell, 36(5), 1622–1636. https://doi.org/10.1093/plcell/koad314
  • Feldmann, M., Pincot, D., Cole, G., & Knapp, S. J. (2024). Genetic gains underpinning a little-known strawberry green revolution. Nature Communications, 15(1), 2468. https://doi.org/10.1038/s41467-024-46421-6
  • Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., & Wang, W. (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Global Change Biology, 29(14), 3970–3989. https://doi.org/10.1111/gcb.16731
  • Fernández-Cabanás, V. M., Delgado, A., Lobillo-Eguíbar, J. R., & Pérez-Urrestarazu, L. (2022). Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquacultural Engineering, 97, 102242. https://doi.org/10.1016/j.aquaeng.2022.102242
  • Fontana, D. C., Cocco, C., Diel, M. I., Pretto, M. M., Holz, E., Pinheiro, M. V. M., & Schmidt, D. (2016). The performance of strawberry cultivars in southern Brazil. International Journal of Current Research, 8(7), 33889–33893.
  • Fournier, C., Durand, J. L., Ljutovac, S., Schäufele, R., Gastal, F., & Andrieu, B. (2005). A functional–structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytologist, 166(3), 881–894. https://doi.org/10.1111/j.1469-8137.2005.01371.x
  • Gallagher, J. N. (1979). Field studies of cereal leaf growth: I. Initiation and expansion in relation to temperature and ontogeny. Journal of Experimental Botany, 30(4), 625–636. https://doi.org/10.1093/jxb/30.4.625
  • Gambardella, M., Contreras, E., Gomà, C., & Grez, J. (2021). Strawberry crop in extreme climatic zones of Chilean Patagonia. Acta Horticulturae, 1309, 555–560. https://doi.org/10.17660/ActaHortic.2021.1309.79
  • García-Tejero, I. F., López-Borrallo, D., Miranda, L., Medina, J. J., Arriaga, J., Muriel-Fernández, J. L., & Martínez-Ferri, E. (2018). Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Scientia Horticulturae, 231, 233–240. https://doi.org/10.1016/j.scienta.2017.12.020
  • Gavilán, P., Ruiz, N., & Lozano, D. (2015). Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management, 159, 307–317. https://doi.org/10.1016/j.agwat.2015.06.012
  • Gosselink, J. G., & Smith, C. R. (1967). Vegetative growth responses of strawberry plants to differing photoperiods. Horticultural Research, 7, 24–33.
  • Grant, O. M., Johnson, A. W., Davies, M. J., James, C. M., & Simpson, D. W. (2010). Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environmental and Experimental Botany, 68(3), 264–272. https://doi.org/10.1016/j.envexpbot.2010.01.008
  • Guan, L., Wilson, Z. A., Zhao, M., Qiao, Y., Wu, E., Wang, Q., Yuan, H., Xu, L., Pang, F., Cai, W., Chen, X., & Xia, J. (2023). New germplasm for breeding: Pink-flowered and white-fruited strawberry. HortScience, 58(9), 1005–1009. https://doi.org/10.21273/HORTSCI17047-22
  • Guan, Z., Abd-Elrahman, A., Fan, Z., Whitaker, V. M., & Wilkinson, B. (2020). Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 171–186. https://doi.org/10.1016/j.isprsjprs.2020.02.021
  • Guevara-Terán, M., Gonzalez-Paramás, A. M., Beltrán-Noboa, A., Giampieri, F., Battino, M., Tejera, E., & Alvarez-Suarez, J. M. (2023). Influence of altitude on the physicochemical composition and antioxidant capacity of strawberry: A preliminary systematic review and meta-analysis. Phytochemistry Reviews, 22(6), 1567–1584. https://doi.org/10.1007/s11101-022-09834-z
  • Guo, K., Huang, C., Miao, Y., Cosgrove, D. J., & Hsia, K. J. (2022). Leaf morphogenesis: The multifaceted roles of mechanics. Molecular Plant, 15(7), 1098–1119. https://doi.org/10.1016/j.molp.2022.05.015
  • Guttridge, C. G., & Thompson, P. A. (1959). The effect of gibberellic acid on length and number of epidermal cells in petioles of strawberry. Nature, 183(4655), 197–198. https://doi.org/10.1038/183197b0
  • Guttridge, C. G., & Thompson, P. A. (1963). The effect of daylength and gibberellic acid on cell length and number in strawberry petioles. Physiologia Plantarum, 16(3), 604–614. https://doi.org/10.1111/j.1399-3054.1963.tb08338.x
  • Han, Y., & Kang, C. (2023). The trithorax group factor ULTRAPETALA1 controls flower and leaf development in woodland strawberry. Plant Science, 333, 111729. https://doi.org/10.1016/j.plantsci.2023.111729
  • Hernández-Martínez, N., Salazar-Gutiérrez, M., Chaves-Córdoba, B., Wells, D., Foshee, W., & McWhirt, A. (2023a). Model development of the phenological cycle from flower to fruit of strawberries (Fragaria × ananassa). Agronomy, 13(10), 2489. https://doi.org/10.3390/agronomy13102489
  • Hernández-Martínez, N. R., Blanchard, C., Wells, D., & Salazar-Gutiérrez, M. R. (2023b). Current state and future perspectives of commercial strawberry production: A review. Scientia Horticulturae, 312, 111893. https://doi.org/10.1016/j.scienta.2023.111893
  • Hou, Z.-X., & Huang, W.-D. (2005). Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta, 222(4), 678–687. https://doi.org/10.1007/s00425-005-0014-1
  • Huang, G., Zhang, Q., Yang, Y., Shu, Y., Ren, X., Peng, S., & Li, Y. (2022). Interspecific variation in the temperature response of mesophyll conductance is related to leaf anatomy. The Plant Cell, 112(1), 221–234. https://doi.org/10.1111/tpj.15942
  • Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T. F., Peng, S., Berry, J. A., Wang, K., Mao, J., Alkama, R., Cescatti, A., Cuntz, M., De Deurwaerder, H., Gao, M., He, Y., Liu, Y., Luo, Y. … Wu, J. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3(5), 772–779. https://doi.org/10.1038/s41559-019-0838-x
  • Hummer, K. E., Bassil, N. V., Zurn, J. D., & Amyotte, B. (2023). Phenotypic characterization of a strawberry (Fragaria ×ananassa Duchesne ex Rosier) diversity collection. Plants People Planet, 5(2), 209–224. https://doi.org/10.1002/ppp3.10316
  • Itoh, Y., & Sano, Y. (2006). Phyllochron dynamics under controlled environments in rice (Oryza sativa L.). Euphytica, 150(1–2), 87–95. https://doi.org/10.1007/s10681-006-9096-5
  • Jahn, O. L., & Dana, M. N. (1970). Effects of cultivar and plant age on vegetative growth of the strawberry, Fragaria ananassa. American Journal of Botany, 57(8), 993–999. https://doi.org/10.1002/j.1537-2197.1970.tb09899.x
  • James, K. M. F., Sargent, D. J., Whitehouse, A., & Cielniak, G. (2022). High-throughput phenotyping for breeding targets – Current status and future directions of strawberry trait automation. Plants People Planet, 4(5), 432–443. https://doi.org/10.1002/ppp3.10275
  • Jiang, N., Yang, Z., Zhang, H., Xu, J., & Li, C. (2023). Effect of low temperature on photosynthetic physiological activity of different photoperiod types of strawberry seedlings and stress diagnosis. Agronomy, 13(5), 1321. https://doi.org/10.3390/agronomy13051321
  • Jiménez, N. P., Feldmann, M. J., Famula, R. A., Pincot, D. D. A., Bjornson, M., Cole, G. S., & Knapp, S. J. (2023). Harnessing underutilized gene bank diversity and genomic prediction of cross usefulness to enhance resistance to Phytophthora cactorum in strawberry. The Plant Genome, 16(1), e20275. https://doi.org/10.1002/tpg2.20275
  • Jo, W. J., & Shin, J. H. (2022). Effect of root-zone heating using positive temperature coefficient film on growth and quality of strawberry (Fragaria × ananassa) in greenhouses. Horticulture, Environment and Biotechnology, 63(1), 89–100. https://doi.org/10.1007/s13580-021-00384-5
  • Jurik, T. W., & Chabot, B. F. (1986). Leaf dynamics and profitability in wild strawberries. Oecologia, 69(2), 296–304. https://doi.org/10.1007/BF00377637
  • Kalve, S., De Vos, D., & Beemster, G. T. S. (2014). Leaf development: A cellular perspective. Frontiers in Plant Science, 5, 362. https://doi.org/10.3389/fpls.2014.00362
  • Kikuzawa, K., Onoda, Y., Wright, I. J., & Reich, P. B. (2013). Mechanisms underlying global temperature-related patterns in leaf longevity. Global Ecology and Biogeography, 22(8), 982–993. https://doi.org/10.1111/geb.12042
  • Kim, S.-H., Yang, Y., Timlin, D. J., Fleisher, D. H., Dathe, A., Reddy, V. R., & Staver, K. (2012). Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agronomy Journal, 104(6), 1523–1537. https://doi.org/10.2134/agronj2011.0321
  • Klakotskaya, N., Laurson, P., Libek, A.-V., & Kikas, A. (2023). Assessment of the aim characteristics of strawberry (Fragaria × ananassa) cultivars in Estonia by using the K-means clustering method. Horticulturae, 9(1), 104. https://doi.org/10.3390/horticulturae9010104
  • Knapp, S. J., Cole, G. S., Pincot, D. D., Lòpez, C. M., Gonzalez-Benitez, O. A., & Famula, R. A. (2023). ‘UC Eclipse’, a summer plant-adapted photoperiod-insensitive strawberry cultivar. HortScience, 58(12), 1568–1572. https://doi.org/10.21273/HORTSCI17363-23
  • Kobayashi, M. J., Ng, K. K. S., Lee, S. L., Muhammad, N., & Tani, N. (2020). Temperature is a regulator of leaf production in the family Dipterocarpaceae of equatorial Southeast Asia. American Journal of Botany, 107(11), 1491–1503. https://doi.org/10.1002/ajb2.1557
  • Krüger, E., Josuttis, M., Nesty, R., Toldam-Andersen, T. B., Carlen, C., & Mezzetti, B. (2012). Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. Journal of Berry Research, 2(3), 143–157. https://doi.org/10.3233/JBR-2012-036
  • Krüger, E., Will, F., Kumar, K., Celejewska, K., Chartier, P., Masny, A., Mott, D., Petit, A., Savini, G., & Sønsteby, A. (2021). Influence of post-flowering climate conditions on anthocyanin profile of strawberry cultivars grown from north to south Europe. Applied Sciences, 11(3), 1326. https://doi.org/10.3390/app11031326
  • Krüger, E., Woznicki, T. L., Heide, O. M., Kusnierek, K., Rivero, R., Masny, A., Sowik, I., Brauksiepe, B., Eimert, K., Mott, D., Savini, G., Demene, M., Guy, K., Petit, A., Denoyes, B., & Sønsteby, A. (2022). Flowering phenology of six seasonal-flowering strawberry cultivars in a coordinated European study. Horticulturae, 8(10), 933. https://doi.org/10.3390/horticulturae8100933
  • Kurokura, T., Inaba, Y., & Sugiyama, N. (2006). Histone H4 gene expression and morphological changes on shoot apices of strawberry (Fragaria × ananassa Duch.) during floral induction. Scientia Horticulturae, 110(2), 192–197. https://doi.org/10.1016/j.scienta.2006.07.013
  • Labadie, M., Caraglio, Y., Pradal, C., & Denoyes, B. (2023a). 2D representation of the plant architecture in strawberry. Acta Horticulturae, 1381, 163–168 https://doi.org/10.17660/ActaHortic.2023.1381.22.
  • Labadie, M., Guy, K., Demené, M.-N., Caraglio, Y., Heidsieck, G., Gaston, A., Rothan, C., Guédon, Y., Pradal, C., Denoyes, B., & Cubas, P. (2023b). Spatio-temporal analysis of strawberry architecture: Insights into the control of branching and inflorescence complexity. Journal of Experimental Botany, 74(12), 3595–3612. https://doi.org/10.1093/jxb/erad097
  • Lainé, C. M. S., AbdElgawad, H., & Beemster, G. T. S. (2023). A meta-analysis reveals differential sensitivity of cold stress responses in the maize leaf. Plant, Cell & Environment, 46(8), 2432–2449. https://doi.org/10.1111/pce.14608
  • Larios, E., Ramirez-Parada, T. H., & Mazer, S. J. (2023). Heritability and variance components of seed size in wild species: Influences of breeding design and the number of genotypes tested. Heredity, 130(4), 251–258. https://doi.org/10.1038/s41437-023-00597-7
  • Larson, K. D., Daugovish, O., & Shaw, D. V. (2009). Optimizing strawberry production and fruit quality with use of protected culture in Southern California. Acta Horticulturae, 842, 171–176. https://doi.org/10.17660/ActaHortic.2009.842.22
  • Lee, B., Yu, S., & Jackson, D. (2009). Control of plant architecture: The role of phyllotaxy and plastochron. Journal of Plant Biology, 52(4), 277–282. https://doi.org/10.1007/s12374-009-9034-x
  • Lembinen, S., Cieslak, M., Zhang, T., Mackenzie, K., Elomaa, P., Prusinkiewicz, P., & Hytönen, T. (2023). Diversity of woodland strawberry inflorescences arises from heterochrony regulated by TERMINAL FLOWER 1 and FLOWERING LOCUS T. The Plant Cell, 35(6), 2079–2094. https://doi.org/10.1093/plcell/koad086
  • Le Mière, P., Hadley, P., Darby, J., & Battey, N. H. (1998). The effect of thermal environment, planting date and crown size on growth, development and yield of Fragaria × ananassa Duch. cv. Elsanta. Journal of Horticultural Science and Biotechnology, 73(6), 786–795. https://doi.org/10.1080/14620316.1998.11511049
  • Li, L., Ma, Z., Niinemets, Ü., & Guo, D. (2017). Three key sub-leaf modules and the diversity of leaf designs. Frontiers in Plant Science, 8, 1542. https://doi.org/10.3389/fpls.2017.01542
  • Li, T.-Y., Wang, S.-X., Tang, X.-G., Dong, X.-X., & Li, H. (2022). The FvemiR167b-FveARF6 module increases the number of roots and leaves in woodland strawberry. Scientia Horticulturae, 293, 110692. https://doi.org/10.1016/j.scienta.2021.110692
  • Li, X., Zhao, J., Shang, M., Song, H., Zhang, J., Xu, X., Zheng, S., Hou, L., Li, M., & Xing, G. (2020). Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria ananassa Duch.) by CO2 enrichment. Biotechnology & Biotechnological Equipment, 34(1), 905–917. https://doi.org/10.1080/13102818.2020.1811766
  • Li, Y., Feng, J., Cheng, L., Dai, C., Gao, Q., Liu, Z., & Kang, C. (2019). Gene expression profiling of the shoot meristematic tissues in woodland strawberry Fragaria vesca. Frontiers in Plant Science, 10, 1624. https://doi.org/10.3389/fpls.2019.01624
  • Liu, Z. (2022). Effects of different overwintering conditions on spring physiology of the seasonal leaves of different woodland strawberry (Fragaria vesca) genotypes [ Master’s Thesis]. Helsinki, Finland: University of Helsinki.
  • Locatelli, S., Brentarolli, E., Nicoletto, C., & Sambo, P. (2023). The influence of greenhouse climatic conditions on 13 strawberry genotypes in quantitative and qualitative traits. Acta Horticulturae, 1377, 173–180. https://doi.org/10.17660/ActaHortic.2023.1377.21
  • López, M.-E., Roquis, D., Becker, C., Denoyes, B., & Bucher, E. (2022). DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Horticulture Research, 9, uhac174. https://doi.org/10.1093/hr/uhac174
  • Lozano, D., Ruiz, N., & Gavilán, P. (2016). Consumptive water use and irrigation performance of strawberries. Agricultural Water Management, 169, 44–51. https://doi.org/10.1016/j.agwat.2016.02.011
  • Lu, R., Pi, M., Liu, Z., & Kang, C. (2023a). Auxin biosynthesis gene FveYUC4 is critical for leaf and flower morphogenesis in woodland strawberry. The Plant Journal, 115(5), 1428–1442. https://doi.org/10.1111/tpj.16333
  • Lu, Y., Gong, M., Li, J., & Ma, J. (2023b). Optimizing controlled environmental agriculture for strawberry cultivation using RL-Informer Model. Agronomy, 13(8), 2057. https://doi.org/10.3390/agronomy13082057
  • Luo, X., Guo, L., Tagliere, E., Yang, Z., & Liu, Z. (2024). Leaf dissection and margin serration are independently regulated by two regulators converging on the CUC2-auxin module in strawberry. Current Biology, 34(4), 769–780.e5. https://doi.org/10.1016/j.cub.2024.01.010
  • Lustosa da Silva, I. F., Shimizu, G. D., dos Santos, E. L., Erpen-Dalla Corte, L., Zeist, A. R., Roberto, S. R., & de Resende, J. T. V. (2023). Breeding short-day strawberry genotypes for cultivation in tropical and subtropical regions. Horticulturae, 9(6), 614. https://doi.org/10.3390/horticulturae9060614
  • Łysiak, G. P., & Szot, I. (2023). The use of temperature based indices for estimation of fruit production conditions and risks in temperate climates. Agriculture, 13(5), 960. https://doi.org/10.3390/agriculture13050960
  • Ma, Y.-Y., Shi, J.-C., Wang, D.-J., Liang, X., Wei, F., Gong, C.-M., Qiu, L.-J., Zhou, H.-C., Folta, K. M., Wen, Y. Q., & Feng, J. Y. (2023). A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiology, 192(4), 2737–2755. https://doi.org/10.1093/plphys/kiad247
  • Madhavi, B. G. K., Kim, N. E., Basak, J. K., Choi, G. M., & Kim, H. T. (2023). Comparative study of strawberry growth and fruit quality parameters in horizontal and vertical production systems. Horticulture, Environment and Biotechnology, 64(3), 409–419. https://doi.org/10.1007/s13580-022-00494-8
  • Manakasem, Y., & Goodwin, P. B. (1998). Using the floral status of strawberry plants, as determined by stereomicroscopy and scanning electron microscopy, to survey the phenology of commercial crops. Journal of the American Society for Horticultural Science, 123(4), 513–517. https://doi.org/10.21273/JASHS.123.4.513
  • Manuela, D., & Xu, M. (2020). Patterning a leaf by establishing polarities. Frontiers in Plant Science, 11, 568730. https://doi.org/10.3389/fpls.2020.568730
  • Martins, F. B., de Cássia Ferreira, M., Fagundes, F., Wilson, G., & Florêncio, L. (2023). Thermal and photoperiodic requirements of the seedling stage of three tropical forest species. Journal of Forestry Research, 34(1), 209–220. https://doi.org/10.1007/s11676-022-01530-0
  • Maskey, M. L., Pathak, T. B., & Dara, S. K. (2019). Weather based strawberry yield forecasts at field scale using statistical and machine learning models. Atmosphere, 10(7), 378. https://doi.org/10.3390/atmos10070378
  • Mbarushimana, J. C., Bosch, D. J., & Samtani, J. B. (2022). An economic comparison of high tunnel and open-field strawberry production in southeastern Virginia. Horticulturae, 8(12), 1139. https://doi.org/10.3390/horticulturae8121139
  • Meicenheimer, R. D. (2014). The plastochron index: Still useful after nearly six decades. American Journal of Botany, 101(11), 1821–1835. https://doi.org/10.3732/ajb.1400305
  • Mendonça, H. F. C., Calvete, E. O., da Costa, R. C., & Nienow, A. A. (2017). Performance production of strawberry in environment cultivated with fig tree. Revista Brasileira de Fruticultura, 39(4), e–615. https://doi.org/10.1590/0100-29452017615
  • Mendonça, H. F. C., Calvete, E. O., Nienow, A. A., da Costa, R. C., Zerbielli, L., & Bonafe, M. (2012a). Phyllochron estimation in intercropped strawberry and monocrop systems in protected environment. Revista Brasileira de Fruticultura, 33(1), 15–23. https://doi.org/10.1590/S0100-29452012000100005
  • Mendonça, H. F. C., Müller, A. L., Boeno, M. C., Zerbielli, L., Bonafe, M., Tazzo, I. F., Calvete, E. O., & Nienow, A. A. (2012b). The phyllochron of strawberry intercropped with fig trees in a greenhouse. Acta Horticulturae, 926, 547–550. https://doi.org/10.17660/ActaHortic.2012.926.77
  • Mendonça, H. F. C., Müller, A. L., Tazzo, I. F., & Calvete, E. O. (2012c). Accumulated leaf number in strawberry cultivars grown in a greenhouse. Acta Horticulturae, 926, 295–300. https://doi.org/10.17660/ActaHortic.2012.926.40
  • Menzel, C. M. (2021). Higher temperatures decrease fruit size in strawberry growing in the subtropics. Horticulturae, 7(2), 34. https://doi.org/10.3390/horticulturae7020034
  • Menzel, C. M. (2022). A review of productivity in strawberry: Do the plants need larger canopies, more flowers, or higher CO2 assimilation for higher yields? Journal of Horticultural Science and Biotechnology, 97(6), 674–696. https://doi.org/10.1080/14620316.2022.2077240
  • Menzel, C. M. (2023). A review of fruit development in strawberry: High temperatures accelerate flower development and decrease the size of the flowers and fruit. Journal of Horticultural Science and Biotechnology, 98(4), 409–431. https://doi.org/10.1080/14620316.2023.2166599
  • Menzel, C. M., & Smith, L. (2012). Effect of time of planting and plant size on the productivity of ‘Festival’ and ‘Florida Fortuna’ strawberry plants in a subtropical environment. HortTechnology, 22(3), 330–337. https://doi.org/10.21273/HORTTECH.22.3.330
  • Milford, G. F. J., Pocock, T. O., & Riley, J. (1985). An analysis of leaf growth in sugar beet. 1. Leaf appearance and expansion in relation to temperature under controlled conditions. Annals of Applied Biology, 106(1), 163–172. https://doi.org/10.1111/j.1744-7348.1985.tb03106.x
  • Mochizuki, Y., Iwasaki, Y., Funayama, M., Ninomiya, S., Fuke, M., Nwe, Y. Y., Yamada, M., & Ogiwara, I. (2013). Analysis of high-yielding strawberry (Fragaria ×ananassa Duch.) cultivar ‘Benihoppe’ with focus on dry matter production and leaf photosynthetic rate. Journal of the Japanese Society for Horticultural Science, 82(1), 22–29. https://doi.org/10.2503/jjshs1.82.22
  • Muñoz-Avila, J. C., Prieto, C., Sánchez-Sevilla, J. F., Amaya, I., & Castillejo, C. (2022). Role of FaSOC1 and FaCO in the seasonal control of reproductive and vegetative development in the perennial crop Fragaria × ananassa. Frontiers in Plant Science, 13, 971846. https://doi.org/10.3389/fpls.2022.971846
  • Nakayama, H., Ichihashi, Y., & Kimura, S. (2023). Diversity of tomato leaf form provides novel insights into breeding. Breeding Science, 73(1), 76–85. https://doi.org/10.1270/jsbbs.22061
  • Nascimento, D. A., Gomes, G. C., de Oliveira, L. V. B., de Paula Gomes, G. F., Ivamoto-Suzuki, S. T., Ziest, A. R., Mariguele, K. H., Roberto, S. R., & de Resende, J. T. V. (2023). Adaptability and stability analyses of improved strawberry genotypes for tropical climate. Horticulturae, 9(6), 643. https://doi.org/10.3390/horticulturae9060643
  • Neri, D., Baruzzi, G., Massetani, F., & Faedi, W. (2012). Strawberry production in forced and protected culture in Europe as a response to climate change. Canadian Journal of Plant Science, 92(6), 1021–1036. https://doi.org/10.4141/cjps2011-276
  • Ngouana, L. S. T., Tonfack, L. B., Temegne, C. N., Agendia, A. P., & Youmbi, E. (2023). Current status of strawberry (Fragaria spp.) cultivation and marketing in Cameroon. Journal of Agriculture and Food Research, 14, 100761. https://doi.org/10.1016/j.jafr.2023.100761
  • Nishizawa, T. (1990). Effects of daylength on cell length and cell number in strawberry petioles. Journal of the Japanese Society for Horticultural Science, 59(3), 533–538. https://doi.org/10.2503/jjshs.59.533
  • Nishizawa, T. (1992). The length and number of epidermal cells in petioles of strawberry plants as affected by photoperiod and temperature during vegetative and resting periods. Journal of the Japanese Society for Horticultural Science, 61(3), 559–564. https://doi.org/10.2503/jjshs.61.559
  • Nishizawa, T. (1994). Effects of photoperiods on the length and number of epidermal cells in runners of strawberry plants. Journal of the Japanese Society for Horticultural Science, 63(2), 347–352. https://doi.org/10.2503/jjshs.63.347
  • Nosaka-Takahashi, M., Kato, M., Kumamaru, T., Sato, Y., & Merks, R. M. H. (2022). Measurements of the number of specified and unspecified cells in the shoot apical meristem during a plastochron in rice (Oryza sativa) reveal the robustness of cellular specification process in plant development. PLoS One, 17(6), e0269374. https://doi.org/10.1371/journal.pone.0269374
  • Nunes, L. J. R. (2023). The rising threat of atmospheric CO2: A Review on the causes, impacts, and mitigation strategies. Environments, 10(4), 66. https://doi.org/10.3390/environments10040066
  • Oh, Y., Barbey, C. R., Chandra, S., Bai, J., Fan, Z., Plotto, A., Pillet, J., Folta, K. M., Whitaker, V. M., & Lee, S. (2021). Genomic characterization of the fruity aroma gene, FaFAD1, reveals a gene dosage effect on γ -decalactone production in strawberry (Fragaria × ananassa). Frontiers in Plant Science, 12, 639345. https://doi.org/10.3389/fpls.2021.639345
  • Olivoto, T., Diel, M. I., Schmidt, D., & Lúcio, A. D. (2022). MGIDI: A powerful tool to analyze plant multivariate data. Plant Methods, 18(1), 121. https://doi.org/10.1186/s13007-022-00952-5
  • Opstad, N., Sønsteby, A., Myrheim, U., & Heide, O. M. (2011). Seasonal timing of floral initiation in strawberry: Effects of cultivar and geographic location. Scientia Horticulturae, 129(1), 127–134. https://doi.org/10.1016/j.scienta.2011.03.022
  • Osorio, L. F., Gezan, S. A., Verma, S., & Whitaker, V. M. (2021). Independent validation of genomic prediction in strawberry over multiple cycles. Frontiers in Genetics, 11, 596258. https://doi.org/10.3389/fgene.2020.596258
  • Palombini, M. C., Palencia, P., Pavão, J. M. S. J., & Chiomento, J. L. T. (2023). Efficiency of strawberry cultivation under the effect of different types of plants in a soilless system in the high-altitude regions of southern Brazil. Agronomy, 13(8), 2179. https://doi.org/10.3390/agronomy13082179
  • Parent, B., Millet, E. J., & Tardieu, F. (2019). The use of thermal time in plant studies has a sound theoretical basis provided that confounding effects are avoided. Journal of Experimental Botany, 70(9), 2359–2370. https://doi.org/10.1093/jxb/ery402
  • Patel, H., Taghavi, T., & Samtani, J. B. (2023). Fruit quality of several strawberry cultivars during the harvest season under high tunnel and open field environments. Horticulturae, 9(10), 1084. https://doi.org/10.3390/horticulturae9101084
  • Peng, Z., Jiao, Y., & Wang, Y. (2023). Morphogenesis of leaves: From initiation to the production of diverse shapes. Biochemical Society Transactions, 51(2), 513–525. https://doi.org/10.1042/BST20220678
  • Pérez de Camacaro, M. E., Camacaro, G. J., Hadley, P., Battey, N. H., & Carew, J. G. (2002). Pattern of growth and development of the strawberry cultivars Elsanta, Bolero, and Everest. Journal of the American Society for Horticultural Science, 127(6), 901–907. https://doi.org/10.21273/JASHS.127.6.901
  • Pérez de Camacaro, M., Ojeda, M., Giménez, A., González, M., & Hernández, A. (2017). Attributes of quality in strawberry fruit ‘Capitola’ harvested in different climatic condition in Venezuela. Bioagro, 29(3), 163–174.
  • Pernisová, M., & Vernoux, T. (2021). Auxin does the SAMba: Auxin signaling in the shoot apical meristem. Cold Spring Harbor Perspectives in Biology, 13(12), a039925. https://doi.org/10.1101/cshperspect.a039925
  • Petrasch, S., Mesquida-Pesci, S. D., Pincot, D. D. A., Feldmann, M. J., López, C. M., Famula, R., Hardigan, M. A., Cole, G. S., Knapp, S. J., Blanco-Ulate, B., & Jannink, J. L. (2022). Genomic prediction of strawberry resistance to postharvest fruit decay caused by the fungal pathogen Botrytis cinerea. G3 Genes Genomes Genetics, 12(1), jkab378. https://doi.org/10.1093/g3journal/jkab378
  • Petri, J. L., Sezerino, A. A., Hawerroth, F. J., Palaadini, L. A., Leite, G. B., & De Martin, M. S. (2021). Dormência e indução à brotação de árvores frutíferas de clima temperado. Florianópolis (pp. 156). Epagri Boletim Técnico 192.
  • Pi, M., Zhong, R., Hu, S., Cai, Z., Plunkert, M., Zhang, W., Liu, Z., & Kang, C. (2023). A GT-1 and PKc domain-containing transcription regulator SIMPLE LEAF1 controls compound leaf development in woodland strawberry. New Phytologist, 237(4), 1391–1404. https://doi.org/10.1111/nph.18589
  • Pincot, D. D. A., Ledda, M., Feldmann, M. J., Hardigan, M. A., Poorten, T. J., Runcie, D. E., Heffelfinger, C., Dellaporta, S. L., Cole, G. S., Knapp, S. J., & De Koning, D.-J. (2021). Social network analysis of the genealogy of strawberry: Retracing the wild roots of heirloom and modern cultivars. G3 Genes Genomes Genetics, 11(3), jkab015. https://doi.org/10.1093/g3journal/jkab015
  • Pincot, D. D. A., Poorten, T. J., Hardigan, M. A., Harshman, J. M., Acharya, C. B., Cole, G. S., Gordon, T. R., Stueven, M., Edger, P. P., & Knapp, S. J. (2018). Genome-wide association mapping uncovers Fw1, a dominant gene conferring resistance to fusarium wilt in strawberry. G3 Genes Genomes Genetics, 8(5), 1817–1828. https://doi.org/10.1534/g3.118.200129
  • Plancade, S., Marchadier, E., Huet, S., Ressayre, A., Noûx, C., & Dillmann, C. (2023). A successive time-to-event model of phyllochron dynamics for hypothesis testing: Application to the analysis of genetic and environmental effects in maize. Plant Methods, 19(1), 54. https://doi.org/10.1186/s13007-023-01029-7
  • Poethig, R. S. (1997). Leaf morphogenesis in flowering plants. The Plant Cell, 9(7), 1077–1087. https://doi.org/10.1105/tpc.9.7.1077
  • Poorter, H., Niinemets, Ü., Walter, A., Fiorani, F., & Schurr, U. (2010). A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany, 61(8), 2043–2055. https://doi.org/10.1093/jxb/erp358
  • Porter, M., Fan, Z., Lee, S., & Whitaker, V. M. (2023). Strawberry breeding for improving flavor. Crop Science, 63(4), 1949–1963. https://doi.org/10.1002/csc2.21012
  • Qiao, Q., Edger, P. P., Xue, L., Qiong, L., Lu, J., Zhang, Y., Cao, Q., Yocca, A. E., Platts, A. E., Knapp, S. J., Van Montagu, M., Van de Peer, Y., Lei, J., & Zhang, T. (2021). Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proceedings of the National Academy of Sciences of the United States of America, 118(45), e2105431118. https://doi.org/10.1073/pnas.2105431118
  • Qiu, Y., Guan, S. C., Wen, C., Li, P., Gao, Z., & Chen, X. (2019). Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biology, 19(1), 528. https://doi.org/10.1186/s12870-019-2151-x
  • Ran, W. (2014). Effect of split root fertigation on the growth and yield of greenhouse strawberry cv. Elsanta [ Master’s Thesis]. Helsinki, Finland: University of Helsinki.
  • Raper, T. B., Ward, R., Rushing, C., Brown, S., Sandlin, T., Norton, R., Hutmacher, B., Snider, J. L., Fromme, D., Dodds, D., Jones, M., Edmisten, K., Collins, G., Byrd, S., Griffin, J., Maeda, M., Frame, H., Pieralisi, B. , and Nichols, R. L. (2023). Reevaluation of the degree day base 60°F concept in US cotton (Gossypium hirsutum L.) production. Agronomy Journal, 115(6), 3045–3061. https://doi.org/10.1002/agj2.21480
  • Read, S., Else, M. A., Hadley, P., & Twitchen, C. (2023). Reducing chill through night-break lighting and gibberellic acid application to achieve year-round UK strawberry production. Acta Horticulturae, 1377, 1–8. https://doi.org/10.17660/ActaHortic.2023.1377.1
  • Robert, F., & Pétel, G. (2000). Nucleotide synthesis capability as a marker of the petiole elongation of strawberry plants (Fragaria × ananassa Duch.). Journal of Horticultural Science and Biotechnology, 75(6), 690–696. https://doi.org/10.1080/14620316.2000.11511309
  • Robert, F., Risser, G., & Pétel, G. (1999). Photoperiod and temperature effect on growth of strawberry plant (Fragaria × ananassa Duch.): Development of a morphological test to assess the dormancy induction. Scientia Horticulturae, 82(3–4), 217–226. https://doi.org/10.1016/S0304-4238(99)00054-0
  • Ronque, E. R. V. (1998). A cultura do morangueiro: revisão e prática. Emater-PR, Brazil.
  • Rosa, H. T., Streck, N. A., Walter, L. C., Andriolo, J. L., & da Silva, M. R. (2013). Crescimento vegetativo e produtivo de duas cultivares de morango sob épocas de plantio em ambiente subtropical. Revista Ciência Agronômica, 44(3), 604–613. https://doi.org/10.1590/S1806-66902013000300024
  • Rosa, H. T., Walter, L. C., Streck, N. A., Andriolo, J. L., da Silva, M. R., & Langner, J. A. (2011). Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a subtropical environment. Bragantia, 70(4), 939–945. https://doi.org/10.1590/S0006-87052011000400029
  • Roth, L., Piepho, H.-P., Hund, A., & Zhu, X.-G. (2022). Phenomics data processing: Extracting dose–response curve parameters from high-resolution temperature courses and repeated field-based wheat height measurements. in silico Plants, 4(1), diac007. https://doi.org/10.1093/insilicoplants/diac007
  • Roussos, P. A., Ntanos, E., Tsafouros, A., & Denaxa, N.-K. (2020). Strawberry physiological and biochemical responses to chilling and freezing stress and application of alleviating factors as countermeasures. Journal of Berry Research, 10(3), 437–457. https://doi.org/10.3233/JBR-190494
  • Runions, A., Tsiantis, M., & Prusinkiewicz, P. (2017). A common developmental program can produce diverse leaf shapes. New Phytologist, 216(2), 401–418. https://doi.org/10.1111/nph.14449
  • Rutz, T., de Resende, J. T. V., Mariguele, K. H., Zeist, R. A., & da Silva, A. L. B. R. (2023). Selection of short-day strawberry genotypes through multivariate analysis. Plants, 12(14), 2650. https://doi.org/10.3390/plants12142650
  • Salimi, I., Khoshgoftarmanesh, A. H., Markarian, S., & Maibodi, S. A. M. M. (2024). Response of strawberry (Fragaria ananassa L.) to chilling and potassium supply from inorganic and amino acid-complexed sources. Scientia Horticulturae, 325, 112655. https://doi.org/10.1016/j.scienta.2023.112655
  • Samad, S., Butare, D., Marttila, S., Sønsteby, A., & Khalil, S. (2021). Effects of temperature and photoperiod on the flower potential in everbearing strawberry as evaluated by meristem dissection. Horticulturae, 7(11), 484. https://doi.org/10.3390/horticulturae7110484
  • Samad, S., Rivero, R., Kalyandurg, P. B., Vetukuri, R. R., Heide, O. M., Sønsteby, A., & Khalil, S. (2022). Characterization of environmental effects on flowering and plant architecture in an everbearing strawberry F1-hybrid by meristem dissection and gene expression analysis. Horticulturae, 8(7), 626. https://doi.org/10.3390/horticulturae8070626
  • Sammarco, I., Münzbergová, Z., & Latzel, V. (2022). DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European-scale reciprocal transplant experiment. Frontiers in Plant Science, 13, 827166. https://doi.org/10.3389/fpls.2022.827166
  • Sammarco, I., Münzbergová, Z., & Latzel, V. (2023). Response of Fragaria vesca to projected change in temperature, water availability and concentration of CO2 in the atmosphere. Scientific Reports, 13(1), 10678. https://doi.org/10.1038/s41598-023-37901-8
  • Shiklomanov, A. N., Cowdery, E. M., Bahn, M., Byun, C., Jansen, S., Kramer, K., Minden, V., Niinemets, U., Onoda, Y., Soudzilovskaia, N. A., & Dietze, M. C. (2020). Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta-analysis. Ecological Applications, 30(3), e02064. https://doi.org/10.1002/eap.2064
  • Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20(4), 565–574. https://doi.org/10.1111/j.1365-2435.2006.01135.x
  • Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L Dantas, V., de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K. … Vandewalle, M. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18(12), 1406–1419. https://doi.org/10.1111/ele.12508
  • Slafer, G. A., & Rawson, H. M. (1995). Rates and cardinal temperatures for processes of development in wheat: Effects of temperature and thermal amplitude. Australian Journal of Plant Physiology, 22(6), 913–926. https://doi.org/10.1071/PP9950913
  • Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1704–1709. https://doi.org/10.1073/pnas.0812721106
  • Soppelsa, S., Gasser, M., & Zago, M. (2023). Optimizing planting density in Alpine Mountain strawberry cultivation in Martell Valley, Italy. Agronomy, 13(5), 1422. https://doi.org/10.3390/agronomy13051422
  • Sproat, B. B., Darrow, G. M., & Beaumont, J. H. (1936). Relation of leaf area to berry production in the strawberry. Proceedings of the American Society for Horticultural Science 33, 389–392.
  • Still, S., Hytönen, T., Saarinena, T., & Åström, H. (2023). Latitudinal origins of Fragaria vesca show adaptive variation in phenological, morphological and ecophysiological leaf traits associated with winter climate. Flora, 305, 152316. https://doi.org/10.1016/j.flora.2023.152316
  • Tazzo, I. F., Fagherazzi, A. F., Lerin, S., Kretzschmar, A. A., & Rufato, L. (2015). Heat requirement of two selections and four strawberry cultivars grown in the Catarinense Plateau. Revista Brasileira de Fruticultura, 37(3), 550–558. https://doi.org/10.1590/0100-2945-097/14
  • Thammasophon, T., Pusadee, T., Bundithya, W., & Naphrom, D. (2023). Effects of vernalization on off–season flowering and gene expression in sub-tropical strawberry cv. Pharachatan 80. Horticulturae, 9(1), 87. https://doi.org/10.3390/horticulturae9010087
  • Thiesen, L. A., Diel, M. I., Pinheiro, M. V. M., Cocco, C., Fontana, D. C., Holz, E., Caron, B. O., & Schmidt, D. (2018). Phyllochron and productive performance of strawberry cultivars: Impact of different regions of origin in a conventional cultivation system. Journal of Agricultural Science, 10(5), 167–178. https://doi.org/10.5539/jas.v10n5p167
  • Toda, S., Sakamoto, T., Imai, Y., Maruko, R., Kanoh, T., Fujiuchi, N., & Takayama, K. (2023). Smartphone-based strawberry plant growth monitoring using YOLO. Acta Horticulturae, 1377, 69–76. https://doi.org/10.17660/ActaHortic.2023.1377.8
  • Tolvanen, K. (2020). Woodland strawberry (Fragaria vesca) summer and winter leaf development, stolon production and leaf pigments in twelve European genotypes under different temperature treatments [ Master’s Thesis]. Helsinki, Finland: University of Helsinki.
  • Van Delm, T., Stoffels, K., Melis, P., Vervoort, M., & Vanderbruggen, R. (2017). Overcoming climatic limitations: Cultivation systems and winter production under assimilation lighting resulting in year-round strawberries. Acta Horticulturae, 1156, 517–528. https://doi.org/10.17660/ActaHortic.2017.1156.77
  • Verdial, M. F. (2004). Cold storage and vernalization of strawberry runners (Fragaria × ananassa) produced in suspended pot culture [ Ph. D. Thesis]. Sao Paulo, Brazil: University of São Paulo
  • Wang, B., Li, W., Xu, K., Lei, Y., Zhao, D., Li, X., Zhang, J., & Zhang, Z. (2023). A splice site mutation in the FvePHP gene is associated with leaf development and flowering time in woodland strawberry. Horticulture Research, 10(1), uhac249. https://doi.org/10.1093/hr/uhac249
  • Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R. P., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A. J. … Zhu, Y. (2017). The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 3(8), 17102. https://doi.org/10.1038/nplants.2017.102
  • Wang, J.-W., & Chen, C. (2022). From laboratory to field: The effect of controlling oscillations in temperature on the growth of crops. Horticulturae, 8(8), 708. https://doi.org/10.3390/horticulturae8080708
  • Wang, S. Y., & Camp, M. J. (2000). Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae, 85(3), 183–199. https://doi.org/10.1016/S0304-4238(99)00143-0
  • Weikai, Y., & Hunt, L. A. (1999). An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84(5), 607–614. https://doi.org/10.1006/anbo.1999.0955
  • Went, F. W. (1957). The Strawberry. In The Experimental Control of Plant Growth (pp. 129–138). Waltham, Massachusetts, USA: Chronica Botanica.
  • Wilhelm, W. W., & McMaster, G. S. (1995). Importance of the phyllochron in studying development and growth in grasses. Crop Science, 35(1), 1–3. https://doi.org/10.2135/cropsci1995.0011183X003500010001x
  • Wiseman, N. J., & Turnbull, C. G. N. (1999). Effects of photoperiod and paclobutrazol on growth dynamics of petioles in strawberry (Fragaria × ananassa). Functional Plant Biology, 26(4), 353–358. https://doi.org/10.1071/PP98001
  • Wu, Y., Li, L., Li, M., Zhang, M., Sun, H., Sigrimis, N., & Changwen, D. (2020). Optimal fertigation for high yield and fruit quality of greenhouse strawberry. PLoS One, 15(4), e0224588. https://doi.org/10.1371/journal.pone.0224588
  • Xu, C., Shen, M.-Y., Wang, M.-T., Yang, Z.-Q., Han, W., & Zheng, S.-H. (2021). Modification of strawberry dry matter accumulation model under short-term high temperature conditions at seedling stage. Chinese Journal of Agrometeorology, 42(7), 572–582.
  • Xu, X., Sun, Y., & Liu, F. (2022). Modulating leaf thickness and calcium content impact on strawberry plant thermotolerance and water consumption. Plant Growth Regulation, 98(3), 539–556. https://doi.org/10.1007/s10725-022-00884-z
  • Xue, Z., Liu, L., & Zhang, C. (2020). Regulation of shoot apical meristem and axillary meristem development in plants. International Journal of Molecular Sciences, 21(8), 2917. https://doi.org/10.3390/ijms21082917
  • Yao, S., Luby, J. J., & Wildung, D. K. (2009). Strawberry cultivar injury after two contrasting Minnesota winters. HortTechnology, 19(4), 803–808. https://doi.org/10.21273/HORTTECH.19.4.803
  • Zhang, Y., Kan, L., Hu, S., Liu, Z., & Kang, C. (2023a). Roles and evolution of four LEAFY homologs in floral patterning and leaf development in woodland strawberry. Plant Physiology, 192(1), 240–255. https://doi.org/10.1093/plphys/kiad067
  • Zhang, Y., Viejo, M., Yakovlev, I., Tengs, T., Krokene, P., Hytönen, T., Grini, P. E., & Fossdal, C. G. (2023b). Major transcriptomic differences are induced by warmer temperature conditions experienced during asexual and sexual reproduction in Fragaria vesca ecotypes. Frontiers in Plant Science, 14, 1213311. https://doi.org/10.3389/fpls.2023.1213311
  • Zhang, Y., Yuan, Y., Qu, M., & Kang, C. (2023c). Brassinosteroid catabolic enzyme CYP734A129 regulates the morphologies of leaves and floral organs in woodland strawberry. Plant Science, 335, 111788. https://doi.org/10.1016/j.plantsci.2023.111788
  • Zheng, G., Wei, W., Li, Y., Kan, L., Wang, F., Zhang, X., Li, F., Liu, Z., & Kang, C. (2019). Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist, 224(1), 480–492. https://doi.org/10.1111/nph.15982
  • Zhou, Y.-Y., & Lin, H. (2023). Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients. Chinese Journal of Plant Ecology, 47(5), 733–744. https://doi.org/10.17521/cjpe.2022.0289
  • Zhu, Y., & Wagner, D. (2020). Plant inflorescence architecture: The formation, activity, and fate of axillary meristems. Cold Spring Harbor Perspectives in Biology, 12(1), a034652. https://doi.org/10.1101/cshperspect.a034652

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.