31
Views
6
CrossRef citations to date
0
Altmetric
Review article

The ubiquitin‐proteasome system—micro target for macro intervention?

, , &
Pages 5-13 | Received 08 Mar 2005, Accepted 08 Mar 2005, Published online: 10 Jul 2009

References

  • Sousa JE, Costa MA, Tuzcu EM, Yadav JS, Ellis S. New frontiers in interventional cardiology. Circulation. 2005;111:671–81.
  • Rowinsky EK. Targeting the molecular target of rapamycin (mTOR). Curr Opin Oncol. 2004;16:564–75.
  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65.
  • Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA. 1975;72:11–5.
  • Ciechanover A, Elias S, Heller H, Ferber S, Hershko A. Characterization of the heat-stable polypeptide of the ATPdependent proteolytic system from reticulocytes. J Biol Chem. 1980;255:7525–8.
  • Hershko A. Ubiquitin-mediated protein degradation. J Biol Chem. 1988;263:15237–40.
  • Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335:1897–905.
  • Ciechanover A, Orian A, Schwartz AL. The ubiquitinmediated proteolytic pathway: mode of action and clinical implication. J Cell Biochem Suppl. 2000;34:40–51.
  • Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.
  • Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol. 2001;2:169–78.
  • Lorite MJ, Smith HJ, Arnold JA, Morris A, Thompson MG, Tisdale MJ. Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF). Br J Cancer. 2001;85:297–302.
  • Nyman TA, Matikainen S, Sareneva T, Julkunen I, Kalkkinen N. Proteome analysis reveals ubiquitinconjugating enzymes to be a new family of interferonalpha- regulated genes. Eur J Biochem. 2000;267:4011–9.
  • Gaczynska M, Rock KL, Goldberg AL. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature. 1993;365:264–7.
  • Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001;83:301–10.
  • Kornitzer D, Ciechanover A. Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol. 2000;182:1–11.
  • Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234:179–86.
  • Kwon YT, Kashina AS, Davydov IV, et al. An essential role of N-terminal arginylation in cardiovascular development. Science. 2002;297:96–9.
  • Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–63.
  • Hon WC, Wilson MI, Harlos K, et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature. 2002;417:975–8.
  • Bercovich B, Stancovski I, Mayer A, et al. Ubiquitindependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem. 1997;272:9002–10.
  • Dai RM, Chen E, Longo DL, Gorbea CM, Li CC. Involvement of valosin-containing protein, an ATPase Copurified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem. 1998;273:3562–73.
  • Grant EP, Michalek MT, Goldberg AL, Rock KL. Rate of antigen degradation by the ubiquitin-proteasome pathway influences MHC class I presentation. J Immunol. 1995;155:3750–88.
  • Cenciarelli C, Hou D, Hsu KC, et al. Activation-induced ubiquitination of the T cell antigen receptor. Science. 1992;257:795–7.
  • Zhang J, Bardos T, Li D, et al. Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol. 2002;169:2236–40.
  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NFkappa B. Cell. 1994;78:773–85.
  • Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest. 2002;82:965–80.
  • Jesenberger V, Jentsch S. Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol. 2002;3:112-21.
  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science. 2000;288:874–7.
  • Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999;340:115–26.
  • De Nigris F, Lerman LO, Condorelli M, Lerman A, Napoli C. Oxidation-sensitive transcription factors and molecular mechanisms in the arterial wall. Antioxid Redox Signal. 2001;3:1119–30.
  • De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol. 2000;20:E83–8.
  • Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest. 2001;107:255–64.
  • Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain. Cell. 2000;103:351–61.
  • Orian A, Gonen H, Bercovich B, et al. SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J. 2000;19:2580–91.
  • Jahngen-Hodge J, Obin MS, Gong X, et al. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem. 1997;272:28218–26.
  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J. 1998;335:637–42.
  • Bulteau AL, Lundberg KC, Humphries KM, et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem. 2001;276:30057–63.
  • Hyun DH, Lee MH, Halliwell B, Jenner P. Proteasomal dysfunction induced by 4-hydroxy-2,3-trans-nonenal, an endproduct of lipid peroxidation: a mechanism contributing to neurodegeneration? J Neurochem. 2002;83:360–70.
  • Ruef J, Moser M, Bode C, Kubler W, Runge MS. 4- hydroxynonenal induces apoptosis, NF-kappaB-activation and formation of 8-isoprostane in vascular smooth muscle cells. Basic Res Cardiol. 2001;96:143–50.
  • Schmitz ML, Bacher S, Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci. 2001;26:186–90.
  • Herrmann J, Gulati R, Napoli C, et al. Oxidative stressrelated increase in ubiquitination in early coronary atherosclerosis. FASEB J. 2003;10:1096/fj.02-0841fje.
  • Wilson SH, Caplice NM, Simari RD, Holmes DR Jr, Carlson PJ, Lerman A. Activated nuclear factor-kappaB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis. 2000;148:23–30.
  • Kikuchi J, Furukawa Y, Kubo N. Induction of ubiquitinconjugating enzyme by aggregated low density lipoprotein in human macrophages and its implications for atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:128–34.
  • Vieira O, Escargueil-Blanc I, Ju¨ rgens G, et al. Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis. FASEB J. 2000;14:532–42.
  • Herrmann J, Edwards WD, Schwartz RS, et al. Increased ubiquitin immunoreactivity in unstable atherosclerotic plaques associated with acute coronary syndromes. J Am Coll Cardiol. 2002;40:1919–27.
  • Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factoralpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol. 1996;16:19–27.
  • Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17:2200–8.
  • Kim K. Proteasome inhibitors sensitize human vascular smooth muscle cells to Fas (CD95)-mediated death. Biochem Biophys Res Commun. 2001;281:305–10.
  • Cui H, Matsui K, Omura S, et al. Proteasome regulation of activation-induced T cell death. Proc Natl Acad Sci USA. 1997;94:7515–20.
  • van der Wal AC, Piek JJ, de Boer OJ, et al. Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes. Heart. 1998;80:14–8.
  • Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101:2883–8.
  • Weyand CM, Goronzy JJ, Liuzzo G, Kopecky SL, Holmes DR Jr, Frye RL. T-cell immunity in acute coronary syndromes. Mayo Clin Proc. 2001;76:1011–20.
  • Wang X, Luo H, Chen H, Duguid W, Wu J. Role of proteasomes in T cell activation and proliferation. J Immunol. 1998;160:788–801.
  • Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 2001;21:1876-90.
  • Yoshimura S, Bondeson J, Brennan FM, Foxwell BM, Feldmann M. Role of NFkappaB in antigen presentation and development of regulatory T cells elucidated by treatment of dendritic cells with the proteasome inhibitor PSI. Eur J Immunol. 2001;31:1883–93.
  • Igarashi M, Kato T, Ohnuma H, Morita Y, Kawanami T, Sasaki H. Ubiquitin expression in atherosclerotic lesions of wistar fatty and wistar lean rats. Artery. 1994;21:256–70.
  • Thyberg J, Blomgren K. Effects of proteasome and calpain inhibitors on the structural reorganization and proliferation of vascular smooth muscle cells in primary culture. Lab Invest. 1999;79:1077–88.
  • Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin-proteasome system in cardiovascular diseases-a hypothesis extended. Cardiovasc Res. 2004;61:11–21.
  • Adam PJ, Weissberg PL, Cary NR, Shanahan CM. Polyubiquitin is a new phenotypic marker of contractile vascular smooth muscle cells. Cardiovasc Res. 1997;33:416–21.
  • Stone DH, Sivamurthy N, Contreras MA, Fitzgerald L, LoGerfo FW, Quist WC. Altered ubiquitin/proteasome expression in anastomotic intimal hyperplasia. J Vasc Surg. 2001;34:1016–22.
  • Meiners S, Laule M, Rother W, et al. Ubiquitin-proteasome pathway as a new target for the prevention of restenosis. Circulation. 2002;105:483–9.
  • Hirata Y, Takagi Y, Fukuda Y, Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis. 1989;78:225–8.
  • Ohkita M, Takaoka M, Kobayashi Y, Itoh E, Uemachi H, Matsumura Y. Involvement of proteasome in endothelin-1 production in cultured vascular endothelial cells. Jpn J Pharmacol. 2002;88:197–205.
  • Okamoto H, Takaoka M, Ohkita M, Itoh M, Nishioka M, Matsumura Y. A proteasome inhibitor lessens the increased aortic endothelin-1 content in deoxycorticosterone acetatesalt hypertensive rats. Eur J Pharmacol. 1998;350:R11–2.
  • Takaoka M, Ohkita M, Itoh M, Kobayashi Y, Okamoto H, Matsumura Y. A proteasome inhibitor prevents vascular hypertrophy in deoxycorticosterone acetate-salt hypertensive rats. Clin Exp Pharmacol Physiol. 2001;28:466–8.
  • Takaoka M, Okamoto H, Ito M, Nishioka M, Kita S, Matsumura Y. Antihypertensive effect of a proteasome inhibitor in DOCA-salt hypertensive rats. Life Sci. 1998;63:PL65–70.
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001;8:739–58.
  • Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.
  • Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer. 2004;40:2217–29.
  • Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17.
  • Podar K, Shringarpure R, Tai YT, et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004;64:7500–6.
  • Kim SC, Rho MC, Lee HS, Kim YK, Kim K. Caspase-3- dependent apoptosis in vascular smooth muscle cell by proteasome inhibition. J Cardiovasc Pharmacol. 2003;42:554–60.
  • Glockzin S, von Knethen A, Scheffner M, Brune B. Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J Biol Chem. 1999;274:19581–6.
  • Song PH, Xie HY, Zheng SS, Wu J. The inhibitory role of lactacystin and beta-lactacystin on T-cell activation and proliferation. Acta Biochim Biophys Sin. 2004;36:123–7.
  • Luo H, Wu Y, Qi S, Wan X, Chen H, Wu J. A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation. 2001;72:196–202.
  • Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T. The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity. 1995;2:493–506.
  • Cobb RR, Felts KA, Parry GC, Mackman N. Proteasome inhibitors block VCAM-1 and ICAM-1 gene expression in endothelial cells without affecting nuclear translocation of nuclear factor-kappa B. Eur J Immunol. 1996;26:839–45.
  • Kalogeris TJ, Laroux FS, Cockrell A, et al. Effect of selective proteasome inhibitors on TNF-induced activation of primary and transformed endothelial cells. Am J Physiol. 1999;276:C856–64.
  • Parry GC, Martin T, Felts KA, Cobb RR. IL-1beta-induced monocyte chemoattractant protein-1 gene expression in endothelial cells is blocked by proteasome inhibitors. Arterioscler Thromb Vasc Biol. 1998;18:934–40.
  • Dagia NM, Goetz DJ. A proteasome inhibitor reduces concurrent, sequential, and long-term IL-1 beta- and TNFalpha- induced ECAM expression and adhesion. Am J Physiol Cell Physiol. 2003;285:C813–22.
  • Jiang J, Cyr D, Babbitt RW, Sessa WC, Patterson C. Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J Biol Chem. 2003;278:49332–41.
  • Stangl V, Lorenz M, Meiners S, et al. Long-term upregulation of eNOS and improvement of endothelial function by inhibition of the ubiquitin-proteasome pathway. FASEB J. 2004;18:272–9.
  • Govers R, de Bree P, Rabelink TJ. Involvement of the proteasome in activation of endothelial nitric oxide synthase. Life Sci. 2003;73:2225–36.
  • Oikawa T, Sasaki T, Nakamura M, et al. The proteasome is involved in angiogenesis. Biochem Biophys Res Commun. 1998;246:243–8.
  • Sunwoo JB, Chen Z, Dong G, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res. 2001;7:1419–28.
  • Bell SE, Mavila A, Salazar R, et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci. 2001;114:2755–73.
  • Stoklosa T, Golab J, Wojcik C, et al. Increased local vascular endothelial growth factor expression associated with antitumor activity of proteasome inhibitor. Apoptosis. 2004;9:193–204.
  • Mezquita J, Mezquita B, Pau M, Mezquita C. Downregulation of Flt-1 gene expression by the proteasome inhibitor MG262. J Cell Biochem. 2003;89:1138–47.
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.
  • Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J. 2000;14:65–77.
  • Meiners S, Hocher B, Weller A, et al. Downregulation of matrix metalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome. Hypertension. 2004;44:471–7.
  • Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents: Part I. Circulation. 2003;107:2274–9.
  • Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents: Part II. Circulation. 2003;107:2383–9.
  • Ostrowska JK, Wojtukiewicz MZ, Chabielska E, Buczko W, Ostrowska H. Proteasome inhibitor prevents experimental arterial thrombosis in renovascular hypertensive rats. Thromb Haemost. 2004;92:171–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.