Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 9, 2006 - Issue 3
242
Views
41
CrossRef citations to date
0
Altmetric
Original

Gamete/embryo – oviduct interactions: implications on in vitro culture

&
Pages 137-143 | Published online: 03 Jul 2009

References

  • Barmat L. I., Worrilow K. C., Paynton B. V. Growth factor expression by human oviduct and buffalo rat liver coculture cells. Fertility and Sterility 1997; 67: 775–779
  • Bauersachs S., Blum H., Mallok S., Wenigerkind H., Rief S., Prelle K., Wolf E. Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach. Biology of Reproduction 2003; 68: 1170–1177
  • Bauersachs S., Rehfeld S., Ulbrich S. E., Mallok S., Prelle K., Wenigerkind H., et al. Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. Journal of Molecular Endocrinology 2004; 32: 449–466
  • Bongso A., Ng S. C., Sathananthan H., Ng P. L., Rauff M., Ratnam S. Improved quality of human embryos when co-cultured with human ampullary cells. Human Reproduction 1989; 4: 706–713
  • Buhi W. C. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 2002; 123: 355–362
  • Buhi W. C., Alvarez I. M. Identification, characterization and localization of three proteins expressed by the porcine oviduct. Theriogenology 2003; 60: 225–238
  • Buhi W. C., Alvarez I. M., Sudhipong V. D., Dones-Smith M. M. Identification and characterization of de novo-synthesized porcine oviductal secretory proteins. Biology of Reproduction 1990; 43: 929–938
  • Buhi W. C., Alvarez I. M., Kouba A. J. Secreted proteins of the oviduct. Cells Tissues Organs 2000; 166: 165–179
  • Chang H. S., Cheng W. T., Wu H. K., Choo K. B. Identification of genes expressed in the epithelium of porcine oviduct containing early embryos at various stages of development. Molecular Reproduction and Development 2000; 56: 331–335
  • Chow J. F., Lee K. F., Chan S. T., Yeung W. S. B. Quantification of transforming growth factor beta1 (TGFbeta1) mRNA expression in mouse preimplantation embryos and determination of TGFbeta receptor (type I and type II) expression in mouse embryos and reproductive tract. Molecular Human Reproduction 2001; 7: 1047–1056
  • Conway-Myers B. A. Co-culture update: creating an embryotrophic environment in vitro. Seminars in Reproductive Endocrinology 1998; 16: 175–182
  • Croxatto H. B. Physiology of gamete and embryo transport through the fallopian tube. Reproductive Biomedicine Online 2002; 4: 160–169
  • DeBaun M. R., Niemitz E. L., Feinberg A. P. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. American Journal of Human Genetics 2003; 72: 156–160
  • Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences USA 1996; 93: 6025–6030
  • Doherty A. S., Mann M. R., Tremblay K. D., Bartolomei M. S., Schultz R. M. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biology of Reproduction 2000; 62: 1526–1535
  • Downing S. J., Maguiness S. D., Tay J. I., Watson A., Leese H. J. Effect of platelet-activating factor on the electrophysiology of the human fallopian tube: early mediation of embryo – maternal dialogue. Reproduction 2002; 124: 523–529
  • Ecker D. J., Stein P., Xu Z., Williams C. J., Kopf G. S., Bilker W. B., et al. Long-term effects of culture of preimplantation mouse embryos on behavior. Proceedings of the National Academy of Sciences USA 2004; 101: 1595–1600
  • Fazeli A., Affara N. A., Hubank M., Holt W. V. Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biology of Reproduction 2004; 71: 60–65
  • Freeman D. A., Woods G. L., Vanderwall D. K., Weber J. A. Embryo-initiated oviductal transport in mares. Journal of Reproduction and Fertility 1992; 95: 535–538
  • Gabler C., Einspanier A., Schams D., Einspanier R. Expression of vascular endothelial growth factor (VEGF) and its corresponding receptors (flt-1 and flk-1) in the bovine oviduct. Molecular Reproduction and Development 1999; 53: 376–383
  • Georgiou A. S., Sostaric E., Wong C. H., Snijders A. P., Wright P. C., Moore H. D., Fazeli A. Gametes alter the oviductal secretory proteome. Molecular and Cellular Proteomics 2005; 4: 1785–1796
  • Gicquel C., Gaston V., Mandelbaum J., Siffroi J. P., Flahault A., Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. American Journal of Human Genetics 2003; 72: 1338–1341
  • Hermoso M., Barrera N., Morales B., Pérez S., Villalón M. Platelet activating factor increases ciliary activity in the hamster oviduct through epithelial production of prostaglandin E2. European Journal of Physiology 2001; 442: 336–345
  • Kane M. T., Morgan P. M., Coonan C. Peptide growth factors and preimplantation development. Human Reproduction Update 1997; 3: 137–157
  • Kawamura K., Sato N., Fukuda J., Kodama H., Kumagai J., Tanikawa H., et al. Leptin promotes the development of mouse preimplantation embryos in vitro. Endocrinology 2002; 143: 922–931
  • Kaye P. L., Harvey M. B. The role of growth factors in preimplantation development. Progress in Growth Factor Research 1995; 6: 1–24
  • Kim H. S., Lee G. S., Hyun S. H., Nam D. H., Lee S. H., Jeong Y. W. Embryotrophic effect of glycosaminoglycans and receptors in development of porcine pre-implantation embryos. Theriogenology 2005; 63: 1167–1180
  • Kouba A. J., Burkhardt B. R., Alvarez I. M., Goodenow M. M., Buhi W. C. Oviductal plasminogen activator inhibitor-1 (PAI-1): mRNA, protein, and hormonal regulation during the estrous cycle and early pregnancy in the pig. Molecular Reproduction and Development 2000a; 56: 378–386
  • Kouba A. J., Alvarez I. M., Buhi W. C. Identification and localization of plasminogen activator inhibitor-1 within the porcine oviduct. Biology of Reproduction 2000b; 62: 501–510
  • Lai Y. M., Wang H. S., Lee C. L., Lee J. D., Huang H. Y., Chang F. H., et al. Insulin-like growth factor-binding proteins produced by Vero cells, human oviductal cells and human endometrial cells, and the role of insulin-like growth factor-binding protein-3 in mouse embryo co-culture systems. Human Reproduction 1996; 11: 1281–1286
  • Lavranos T. C., Rathjen P. D., Seamark R. F. Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos. Journal of Reproduction and Fertility 1995; 105: 331–338
  • Lee K. F., Kwok K. L., Yeung W. S. B. Suppression subtractive hybridization identifies genes expressed in oviduct during mouse preimplantation period. Biochemical and Biophysical Research Communication 2000; 277: 680–685
  • Lee K. F., Chow J. F. C., Xu J. S., Chan S. T. H., Ip S. M., Yeung W. S. B. A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro and cocultured with human oviductal cells using messenger ribonucleic acid differential display. Biology of Reproduction 2001; 64: 910–917
  • Lee K. F., Yao Y. Q., Kwok K. L., Xu J. S., Yeung W. S. B. Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochemical and Biophysical Research Communication 2002; 292: 564–570
  • Lee K. F., Kwok K. L., Chung M. K., Lee Y. L., Chow J. F. C., Yeung W. S. B. Phospholipid transfer protein (PLTP) mRNA expression is stimulated by developing embryos in the oviduct. Journal of Cellular Biochemistry 2005; 95: 740–749
  • Lee K. F., Xu J. S., Lee Y. L., Yeung W. S. Demilune cell and parotid protein from murine oviductal epithelium stimulates preimplantation embryo development. Endocrinology 2006; 147: 79–87
  • Lee Y. L., Lee K. F., Xu J. S., Kwok K. L., Luk J. M., Lee W. M., et al. Embryotrophic factor-3 from human oviductal cells affects the messenger RNA expression of mouse blastocyst. Biology of Reproduction 2003; 68: 375–382
  • Lee Y. L., Lee K. F., Xu J. S., He Q. Y., Chiu J. F., Lee W. M., et al. The embryotrophic activity of oviductal cell derived complement C3b and iC3b-a novel function of complement protein in reproduction. Journal of Biological Chemistry 2004; 279: 12763–12768
  • Leese H. J. Metabolic control during preimplantation mammalian development. Human Reproduction Update 1995; 1: 63–72
  • Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 257: 967–971
  • Lighten A. D., Moore G. E., Winston R. M., Hardy K. Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture. Human Reproduction 1998; 13: 3144–3450
  • Liu L. P., Chan S. T., Ho P. C., Yeung W. S. B. Human oviductal cells produce high molecular weight factor(s) that improves the development of mouse embryo. Human Reproduction 1995; 10: 2781–2786
  • Liu L. P., Chan S. T., Ho P. C., Yeung W. S. Partial purification of embryotrophic factors from human oviductal cells. Human Reproduction 1998; 13: 1613–1619
  • Lonergan P., Carolan C., Van Langendonckt A., Donnay I., Khatir H., Mermillod P. Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro. Biology of Reproduction 1996; 54: 1420–1429
  • Lonergan P., Rizos D., Kanka J., Nemcova L., Mbaye A. M., Kingston M., et al. Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction 2003; 126: 337–346
  • Lu D. P., Chandrakanthan V., Cahana A., Ishii S., O'Neill C. Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. Journal of Cell Science 2004; 117: 1567–1576
  • Maher E. R., Afnan M., Barratt C. L. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?. Human Reproduction 2003; 18: 2508–2511
  • Mann M. R., Lee S. S., Doherty A. S., Verona R. I., Nolen L. D., Schultz R. M., Bartolomei M. S. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004; 131: 3727–3735
  • McCauley T. C., Buhi W. C., Wu G. M., Mao J., Caamano J. N., Didion B. A., Day B. N. Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biology of Reproduction 2003; 69: 828–834
  • Mermillod P., Vansteenbrugge A., Wils C., Mourmeaux J. L., Massip A., Dessy F. Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos. Biology of Reproduction 1993; 49: 582–587
  • Murray M. K. Epithelial lining of the sheep ampulla oviduct undergoes pregnancy-associated morphological changes in secretory status and cell height. Biology of Reproduction 1995; 53: 653–663
  • Natale D. R., Kidder G. M., Westhusin M. E., Watson A. J. Assessment by differential display-RT-PCR of mRNA transcript transitions and alpha-amanitin sensitivity during bovine preattachment development. Molecular Reproduction and Development 2000; 55: 152–163
  • O'Day-Bowman M. B., Mavrogianis P. A., Fazleabas A. T., Verhage H. G. A human oviduct-specific glycoprotein: synthesis, secretion, and localization during the menstrual cycle. Microscopy Research and Technique 1995; 32: 57–69
  • O'Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biology of Reproduction 1997; 56: 229–237
  • O'Neill C., Ryan J. P., Collier M., Saunders D. M., Ammit A. J., Pike I. L. Supplementation of in-vitro fertilisation culture medium with platelet activating factor. Lancet 1989; 2: 769–772
  • Ortiz M. E., Bedregal P., Carvajal M. I., Croxatto H. B. Fertilized and unfertilized ova are transported at different rates by the hamster oviduct. Biology of Reproduction 1986; 34: 777–781
  • Ortiz M. E., Llados C., Croxatto H. B. Embryos of different ages transferred to the rat oviduct enter the uterus at different times. Biology of Reproduction 1989; 41: 381–384
  • Paria B. C., Dey S. K. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proceedings of the National Academy of Sciences USA 1990; 87: 4756–4760
  • Paria B. C., Das S. K., Dey S. K. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling. Proceedings of the National Academy of Sciences USA 1995; 92: 9460–9464
  • Ponsuksili S., Tesfaye D., El-Halawany N., Schellander K., Wimmers K. Stage-specific expressed sequence tags obtained during preimplantation bovine development by differential display RT-PCR and suppression subtractive hybridization. Prenatal Diagnosis 2002; 22: 1135–1142
  • Reeder R. L., Shirley B. Deciliation in the ampulla of the rat oviduct and effects of estrogen on the process. Journal of Experimental Zoology 1999; 283: 71–80
  • Rinaudo P., Schultz R. M. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 2004; 128: 301–311
  • Roberts C., O'Neill C., Wright L. Platelet activating factor (PAF) enhances mitosis in preimplantation mouse embryos. Reproduction Fertility and Development 1993; 5: 271–279
  • Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467–470
  • Shirley B., Reeder R. L. Cyclic changes in the ampulla of the rat oviduct. Journal of Experimental Zoology 1996; 276: 164–173
  • Sjoblom C., Wikland M., Robertson S. A. Granulocyte-macrophage colony-stimulating factor promotes human blastocyst development in vitro. Human Reproduction 1999; 14: 3069–3076
  • Sjoblom C., Wikland M., Robertson S. A. Granulocyte-macrophage colony-stimulating factor (GM-CSF) acts independently of the beta common subunit of the GM-CSF receptor to prevent inner cell mass apoptosis in human embryos. Biology of Reproduction 2002; 67: 1817–1823
  • Sjoblom C., Roberts C. T., Wikland M., Robertson S. A. GM-CSF alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 2005; 146: 2142–2153
  • Stein B. A., O'Neill C. Morphometric evidence of changes in the vasculature of the uterine tube of mice induced by the 2-cell embryo on the second day of pregnancy. Journal of Anatomy 1994; 185: 397–403
  • Tadokoro C., Yoshimoto Y., Sakata M., Imai T., Yamaguchi M., Kurachi H., et al. Expression and localization of glucose transporter 1 (GLUT1) in the rat oviduct: a possible supplier of glucose to embryo during early embryonic development. Biochemical and Biophysical Research Communications 1995; 214: 1211–1218
  • Thompson J. G., Gardner D. K., Pugh P. A., McMillan W. H., Tervit H. R. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biology of Reproduction 1995; 53: 1385–1391
  • Tiemann U., Neels P., Kuchenmeister U., Walzel H., Spitschak M. Effect of ATP and platelet-activating factor on intracellular calcium concentrations of cultured oviductal cells from cows. Journal of Reproduction and Fertility 1996; 108: 1–9
  • Tiemann U., Neels P., Pohland R., Walzel H., Lohrke B. Influence of inhibitors on increase in intracellular free calcium and proliferation induced by platelet-activating factor in bovine oviductal cells. Journal of Reproduction and Fertility 1999; 116: 63–72
  • Tiemann U., Viergutz T., Jonas L., Wollenhaupt K., Pohland R., Kanitz W. Fluorometric detection of platelet activating factor receptor in cultured oviductal epithelial and stromal cells and endometrial stromal cells from bovine at different stages of the oestrous cycle and early pregnancy. Domestic Animal Endocrinology 2001; 20: 149–164
  • Velasquez L. A., Aguilera J. G., Croxatto H. B. Possible role of platelet-activating factor in embryonic signaling during oviductal transport in the hamster. Biology of Reproduction 1995; 52: 1302–1306
  • Velasquez L. A., Maisey K., Fernandez R., Valdes D., Cardenas H., Imarai M., et al. PAF receptor and PAF acetylhydrolase expression in the endosalpinx of the human Fallopian tube: possible role of embryo-derived PAF in the control of embryo transport to the uterus. Human Reproduction 2001; 16: 1583–1587
  • Wang H., Guo Y., Wang D., Kingsley P. J., Marnett L. J., Das S. K., et al. Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nature Medicine 2004; 10: 1074–1080
  • Watson A. J., Westhusin M. E., Winger Q. A. IGF paracrine and autocrine interactions between conceptus and oviduct. Journal of Reproduction and Fertility (Supplement) 1999; 54: 303–315
  • Weber J. A., Freeman D. A., Vanderwall D. K., Woods G. L. Prostaglandin E2 hastens oviductal transport of equine embryos. Biology of Reproduction 1991; 45: 544–546
  • Winger Q. A., de los Rios P., Han V. K., Armstrong D. T., Hill D. J., Watson A. J. Bovine oviductal and embryonic insulin-like growth factor binding proteins: possible regulators of ‘embryotrophic’ insulin-like growth factor circuits. Biology of Reproduction 1997; 56: 1415–1423
  • Wolf E., Arnold G. J, Bauersachs S., Beier H. M., Blum H., Einspanier R., et al. Embryo-maternal communication in bovine-strategies for deciphering a complex cross-talk. Reproduction in Domestic Animals 2003; 38: 276–289
  • Yao Y. Q., Xu J. S., Lee W. M., Yeung W. S. B., Lee K. F. Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization. Biochemical and Biophysical Research Communications 2003; 304: 60–66
  • Yeung W. S. B., Ho P. C., Lau E. Y. L., Chan S. T. H. Improved development of human embryos in vitro by a human oviductal cell co-culture system. Human Reproduction 1992; 7: 1144–1149
  • Yeung W. S. B., Lau E. Y. L., Chan S. T. H., Ho P. C. Coculture with homologous oviductal cells improved the implantation of human embryo – a randomized control trial. Journal of Assisted Reproduction and Genetics 1996; 13: 762–767
  • Yeung W. S. B., Lee K. F., Xu J. S. The oviduct and development of the preimplantation embryo. Reproductive Medicine Review 2002; 10: 21–44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.