Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 23, 2020 - Issue 2
286
Views
6
CrossRef citations to date
0
Altmetric
Commentary

Time-lapse videography for embryo selection/de-selection: a bright future or fading star?

, , &
Pages 76-82 | Received 22 Jun 2018, Accepted 10 Feb 2019, Published online: 09 Apr 2019

References

  • Alikani, M., Fauser, B., Anderson, R., Garcia-Velasco, J.A., & Johnson, M. (2018). Response from the editors: Time-lapse systems for ART – meta-analyses and the issue of bias. Reproductive Biomedicine Online, 36, 293. doi: 10.1016/j.rbmo.2017.12.004.
  • Armstrong, S., Bhide, P., Jordan, V., Pacey, A., & Farquhar, C. (2018a). Time-lapse systems for ART. Reproductive Biomedicine Online, 36, 288–289. doi: 10.1016/j.rbmo.2017.12.012.
  • Armstrong, S., Bhide, P., Jordan, V., Pacey, A., & Farquhar, C. (2018b). Time-lapse systems for embryo incubation and assessment in assisted reproduction. The Cochrane Database of Systematic Reviews, 5, CD011320. doi: 10.1002/14651858.CD011320.pub3.
  • Athayde Wirka, K., Chen, A.A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., … Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: High prevalence and association with embryo development. Fertility and Sterility, 101, 1637–1648 e1631–1635. doi: 10.1016/j.fertnstert.2014.02.050.
  • Azzarello, A., Hoest, T., Hay-Schmidt, A., & Mikkelsen, A.L. (2017). Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions. Reproductive Biology, 17, 144–150. doi: 10.1016/j.repbio.2017.03.004.
  • Banerjee, P., Choi, B., Shahine, L.K., Jun, S.H., O'Leary, K., Lathi, R.B., … Yao, M.W.M. (2010). Deep phenotyping to predict live birth outcomes in in vitro fertilization. Proceedings of the National Academy of Sciences USA, 107, 13570–13575. doi: 10.1073/pnas.1002296107.
  • Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017a). Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertility and Sterility, 107, 613–621. doi: 10.1016/j.fertnstert.2016.11.014.
  • Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., & Troup, S. (2017b). Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reproductive Biomedicine Online, 34, 455–462. doi: 10.1016/j.rbmo.2017.02.011.
  • Basile, N., Vime, P., Florensa, M., Aparicio Ruiz, B., García Velasco, J.A., Remohí, J., & Meseguer, M. (2015). The use of morphokinetics as a predictor of implantation: A multicentric study to define and validate an algorithm for embryo selection. Human Reproduction, 30, 276–283. doi: 10.1093/humrep/deu331.
  • Bhide, P., Maheshwari, A., Cutting, R., Seenan, S., Patel, A., Khan, K., & Homburg, R. (2017). Time lapse imaging: Is it time to incorporate this technology into routine clinical practice? Human Fertility, 20, 74–79. doi: 10.1080/14647273.2017.1283068.
  • Bodri, D., Sugimoto, T., Serna, J.Y., Kondo, M., Kato, R., Kawachiya, S., & Matsumoto, T. (2015). Influence of different oocyte insemination techniques on early and late morphokinetic parameters: Retrospective analysis of 500 time-lapse monitored blastocysts. Fertility and Sterility, 104, 1175–1181. e1171–1172. doi: 10.1016/j.fertnstert.2015.07.1164.
  • Chen, M., Wei, S., Hu, J., Yuan, J., & Liu, F. (2017). Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials. PLoS One, 12, e0178720. doi: 10.1371/journal.pone.0178720.
  • Ciray, H.N., Campbell, A., Agerholm, I.E., Aguilar, J., Chamayou, S., Esbert, M., … Time, L.U.G. (2014). Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Human Reproduction, 29, 2650–2660. doi: 10.1093/humrep/deu278.
  • Conaghan, J., Chen, A.A., Willman, S.P., Ivani, K., Chenette, P.E., Boostanfar, R., … Shen, S. (2013). Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: Results from a prospective multicenter trial. Fertility and Sterility, 100, 412–419 e5. doi: 10.1016/j.fertnstert.2013.04.021.
  • Cruz, M., Garrido, N., Gadea, B., Muñoz, M., Perez-Cano, I., & Meseguer, M. (2013). Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reproductive Biomedicine Online, 27, 367–375. doi: 10.1016/j.rbmo.2013.06.017.
  • Desai, N., Goldberg, J.M., Austin, C., & Falcone, T. (2018). Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertility and Sterility, 109, 665–674. doi: 10.1016/j.fertnstert.2017.12.025.
  • Ebner, T., Höggerl, A., Oppelt, P., Radler, E., Enzelsberger, S.-H., Mayer, R.B., … Shebl, O. (2017). Time-lapse imaging provides further evidence that planar arrangement of blastomeres is highly abnormal. Archives of Gynecology and Obstetrics, 296, 1199–1205. doi: 10.1007/s00404-017-4531-5.
  • Freour, T., Le Fleuter, N., Lammers, J., Splingart, C., Reignier, A., & Barriere, P. (2015). External validation of a time-lapse prediction model. Fertility and Sterility, 103, 917–922. doi: 10.1016/j.fertnstert.2014.12.111.
  • Gardner, D., Meseguer, M., Rubio, C., & Treff, N.R. (2015). Diagnosis of human preimplantation embryo viability. Human Reproduction Update, 21, 727–747. doi: 10.1093/humupd/dmu064.
  • Goodman, L.R., Goldberg, J., Falcone, T., Austin, C., & Desai, N. (2016). Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertility and Sterility, 105, 275–285 e10. doi: 10.1016/j.fertnstert.2015.10.013.
  • Kaser, D.J., Bormann, C.L., Missmer, S.A., Farland, L.V., Ginsburg, E.S., & Racowsky, C. (2017). A pilot randomized controlled trial of Day 3 single embryo transfer with adjunctive time-lapse selection versus Day 5 single embryo transfer with or without adjunctive time-lapse selection. Human Reproduction, 32, 1598–1603. doi: 10.1093/humrep/dex231.
  • Kaser, D.J., & Racowsky, C. (2014). Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: A systematic review. Human Reproduction Update, 20, 617–631. doi: 10.1093/humupd/dmu023.
  • Kaufmann, S.J., Eastaugh, J.L., Snowden, S., Smye, S.W., & Sharma, V. (1997). The application of neural networks in predicting the outcome of in-vitro fertilization. Human Reproduction, 12, 1454–1457. doi: 10.1093/humrep/12.7.1454.
  • Kirkegaard, K., Ahlstrom, A., Ingerslev, H.J., & Hardarson, T. (2015). Choosing the best embryo by time lapse versus standard morphology. Fertility and Sterility, 103, 323–332. doi: 10.1016/j.fertnstert.2014.11.003.
  • Kirkegaard, K., Campbell, A., Agerholm, I., Bentin-Ley, U., Gabrielsen, A., Kirk, J., … Ingerslev, H.J. (2014). Limitations of a time-lapse blastocyst prediction model: A large multicentre outcome analysis. Reproductive Biomedicine Online, 29, 156–158. doi: 10.1016/j.rbmo.2014.04.011.
  • Kirkegaard, K., Hindkjaer, J.J., Grondahl, M.L., Kesmodel, U.S., & Ingerslev, H.J. (2012). A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. Journal of Assisted Reproduction and Genetics, 29, 565–572. doi: 10.1007/s10815-012-9750-x.
  • Kirkegaard, K., Hindkjaer, J.J., & Ingerslev, H.J. (2013). Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertility and Sterility, 99, 738–744 e4. doi: 10.1016/j.fertnstert.2012.
  • Kirkegaard, K., Sundvall, L., Erlandsen, M., Hindkjaer, J.J., Knudsen, U.B., & Ingerslev, H.J. (2016). Timing of human preimplantation embryonic development is confounded by embryo origin. Human Reproduction, 31, 324–331. doi: 10.1093/humrep/dev296.
  • Liu, Y., Chapple, V., Feenan, K., Roberts, P., & Matson, P. (2015a). Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: A time-lapse study. Fertility and Sterility, 103, 1485–1491.e1. doi: 10.1016/j.fertnstert.2015.03.017.
  • Liu, Y., Chapple, V., Feenan, K., Roberts, P., & Matson, P. (2015b). Time-lapse videography of human embryos: Using pronuclear fading rather than insemination in IVF and ICSI cycles removes inconsistencies in time to reach early cleavage milestones. Reproductive Biology, 15, 122–125. doi: 10.1016/j.repbio.2015.03.002.
  • Liu, Y., Chapple, V., Feenan, K., Roberts, P., & Matson, P. (2016). Time-lapse deselection model for human day 3 in vitro fertilization embryos: The combination of qualitative and quantitative measures of embryo growth. Fertility and Sterility, 105, 656–662 e1. doi: 10.1016/j.fertnstert.2015.11.003.
  • Liu, Y., Chapple, V., Roberts, P., & Matson, P. (2014). Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertility and Sterility, 102, 1295–1256.e2. doi: 10.1016/j.fertnstert.2014.07.1235.
  • Liu, Y., Copeland, C., Stevens, A., Feenan, K., Chapple, V., Myssonski, K., … Matson, P. (2015). Assessment of human embryos by time-lapse videography: A comparison of quantitative and qualitative measures between two independent laboratories. Reproductive Biology, 15, 210–216. doi: 10.1016/j.repbio.2015.09.001.
  • Liu, Y., Feenan, K., Chapple, V., & Matson, P. (2018). Assessing efficacy of day 3 embryo time-lapse algorithms retrospectively: Impacts of dataset type and confounding factors. Human Fertility, Advance Online Publication, 1–9. doi: 10.1080/14647273.2018.1425919.
  • Martinez-Granados, L., Serrano, M., Gonzalez-Utor, A., Ortiz, N., Badajoz, V., Olaya, E., … Castilla, J.A. Special Interest Group in Quality of ASEBIR (Spanish Society for the Study of Reproductive Biology). (2017). Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse. PLoS One, 12, e0183328. doi: 10.1371/journal.pone.0183328.
  • Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K.M., Ramsing, N.B., & Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Human Reproduction, 26, 2658–2671. doi: 10.1093/humrep/der256.
  • Milewski, R., Kuć, P., Kuczyńska, A., Stankiewicz, B., Łukaszuk, K., & Kuczyński, W. (2015). A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. Journal of Assisted Reproduction and Genetics, 32, 571–579. doi: 10.1007/s10815-015-0440-3.
  • Milewski, R., Kuczyńska, A., Stankiewicz, B., & Kuczyński, W. (2017). How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Advances in Medical Sciences, 62, 202–206. doi: 10.1016/j.advms.2017.02.001.
  • Montag, M., Toth, B., & Strowitzki, T. (2013). New approaches to embryo selection. Reproductive Biomedicine Online, 27, 539–546. doi: 10.1016/j.rbmo.2013.05.013.
  • Mumusoglu, S., Yarali, I., Bozdag, G., Ozdemir, P., Polat, M., Sokmensuer, L.K., & Yarali, H. (2017). Time-lapse morphokinetic assessment has low to moderate ability to predict euploidy when patient- and ovarian stimulation-related factors are taken into account with the use of clustered data analysis. Fertility and Sterility, 107, 413–421 e4. doi: 10.1016/j.fertnstert.2016.11.005.
  • Muñoz, M., Cruz, M., Humaidan, P., Garrido, N., Perez-Cano, I., & Meseguer, M. (2013). The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: A time-lapse study. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 168, 167–172. doi: 10.1016/j.ejogrb.2012.12.038.
  • Park, H., Bergh, C., Selleskog, U., Thurin-Kjellberg, A., & Lundin, K. (2015). No benefit of culturing embryos in a closed system compared with a conventional incubator in terms of number of good quality embryos: Results from an RCT. Human Reproduction, 30, 268–275. doi: 10.1093/humrep/deu316.
  • Paulson, R.J., Reichman, D.E., Zaninovic, N., Goodman, L.R., & Racowsky, C. (2018). Time-lapse imaging: Clearly useful to both laboratory personnel and patient outcomes versus just because we can doesn't mean we should. Fertility and Sterility, 109, 584–591. doi: 10.1016/j.fertnstert.2018.01.042.
  • Petersen, B.M., Boel, M., Montag, M., & Gardner, D.K. (2016). Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Human Reproduction, 31, 2231–2244. doi: 10.1093/humrep/dew188.
  • Pribenszky, C., Nilselid, A.M., & Montag, M. (2017). Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: A meta-analysis. Reproductive Biomedicine Online, 35, 511–520. doi: 10.1016/j.rbmo.2017.06.022.
  • Pribenszky, C., Nilselid, A.M., & Montag, M. (2018). Response: Time-lapse systems for ART. Reproductive Biomedicine Online, 36, 290–292. doi: 10.1016/j.rbmo.2017.12.011.
  • Racowsky, C., Kovacs, P., & Martins, W.P. (2015). A critical appraisal of time-lapse imaging for embryo selection: Where are we and where do we need to go? Journal of Assisted Reproduction and Genetics, 32, 1025–1030. doi: 10.1007/s10815-015-0510-6.
  • Racowsky, C., & Martins, W.P. (2017). Effectiveness and safety of time-lapse imaging for embryo culture and selection: It is still too early for any conclusions? Fertility and Sterility, 108, 450–452. doi: 10.1016/j.fertnstert.2017.07.1156.
  • Rubio, I., Galan, A., Larreategui, Z., Ayerdi, F., Bellver, J., Herrero, J., & Meseguer, M. (2014). Clinical validation of embryo culture and selection by morphokinetic analysis: A randomized, controlled trial of the EmbryoScope. Fertility and Sterility, 102, 1287–1294 e5. doi: 10.1016/j.fertnstert.2014.07.738.
  • Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escribá, M.-J., … Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: A time-lapse study. Fertility and Sterility, 98, 1458–1463. doi: 10.1016/j.fertnstert.2012.07.1135.
  • Sakkas, D. (2016). Cleavage in the preimplantation embryo: It is all about being in the right place at the right time! Molecular Human Reproduction, 22, 679–680. doi: 10.1093/molehr/gaw058.
  • Sanchez, T., Seidler, E.A., Gardner, D.K., Needleman, D., & Sakkas, D. (2017). Will noninvasive methods surpass invasive for assessing gametes and embryos? Fertility and Sterility, 108, 730–737. doi: 10.1016/j.fertnstert.2017.10.004.
  • Storr, A., Venetis, C., Cooke, S., Kilani, S., & Ledger, W. (2018). Time-lapse algorithms and morphological selection of day-5 embryos for transfer: A preclinical validation study. Fertility and Sterility, 109, 276–283 e3. doi: 10.1016/j.fertnstert.2017.10.036.
  • Sundvall, L., Ingerslev, H.J., Breth Knudsen, U., & Kirkegaard, K. (2013). Inter- and intra-observer variability of time-lapse annotations. Human Reproduction, 28, 3215–3221. doi: 10.1093/humrep/det366.
  • Tran, A., Cooke, S., Illingworth, P.J., & Gardner, D. (2018). Artificial intelligence as a novel approach for embryo selection. Fertility and Sterility, 110, e430. doi: 10.1016/j.fertnstert.2018.08.034.
  • VerMilyea, M.D., Tan, L., Anthony, J.T., Conaghan, J., Ivani, K., Gvakharia, M., … Shen, S. (2014). Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: A blinded, multi-centre study. Reproductive Biomedicine Online, 29, 729–736. doi: 10.1016/j.rbmo.2014.09.005.
  • Wang, Y., Moussavi, F., & Lorenzen, P. (2013). Automated embryo stage classification in time-lapse microscopy video of early human embryo development. In: K. Mori, I. Sakuma, Y. Sato, C. Barillot, & N. Navab (Eds.), Medical Image Computing and Computer-Assisted Intervention, 16 part 2 (pp. 460–467). Berlin, Heidelberg: Springer-Verlag.
  • Wdowiak, A., Bakalczuk, S., & Bakalczuk, G. (2015). The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reproductive Biology, 15, 94–100. doi: 10.1016/j.repbio.2015.03.003.
  • Wissing, M.L., Bjerge, M.R., Olesen, A.I.G., Hoest, T., & Mikkelsen, A.L. (2014). Impact of PCOS on early embryo cleavage kinetics. Reproductive Biomedicine Online, 28, 508–514. doi: 10.1016/j.rbmo.2013.11.017.
  • Wong, C.C., Loewke, K.E., Bossert, N.L., Behr, B., De Jonge, C.J., Baer, T.M., & Reijo Pera, R.A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology, 28, 1115–1121. doi: 10.1038/nbt.1686.
  • Yalcinkaya, E., Ergin, E.G., Caliskan, E., Oztel, Z., Ozay, A., & Ozornek, H. (2014). Reproducibility of a time-lapse embryo selection model based on morphokinetic data in a sequential culture media setting. Journal of the Turkish German Gynecological Association, 15, 156–160. doi: 10.5152/jtgga.2014.13068.
  • Zaninovic, N., Khosravi, P., Hajirasouliha, I., Malmsten, J.E., Kazemi, E., Zhan, Q., … Rosenwaks, Z. (2018). Assessing human blastocyst quality using artificial intelligence (AI) convolutional neural network (CNN). Fertility and Sterility, 110, e89. doi: 10.1016/j.fertnstert.2018.07.267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.